CLASS DISCUSSION: 20 MARCH 2019

DOUBLE INTEGRALS IN POLAR COORDINATES

VERNAL EQUINOX

Review:

- 1. Using a double integral, find the area of an ellipse with semi-axes of length a and b.
- 2. Compute the *volume* of each of the following regions:
 - Beneath the saddle z = xy and above the unit square $[0, 1] \times [0, 1]$ (a)
 - Beneath the paraboloid $z = x^2 + y^2$ and above the rectangle [-1, 1]×[0, 1] (b)
- **3.** Compute the *average temperature* over the given plate:
 - (a) $T(x, y) = x \sin y$; $R = \text{region enclosed by the curves } y = 0, y = x^2, \text{ and } x = 1$
 - (b) $T(x, y) = y/(1 + x^2)$; $R = [0, \pi] \times [0, 2\pi]$
 - (c) $T(x, y) = y \ln x 5$; $R = [1, e] \times [1/e, 1]$
- 4. Find the *mass* of each of the following metallic sheets given the density function:
 - $\delta(x, y) = x e^{x+y} g/cm^2$; $R = [0, 2] \times [0, 9]$
 - (b) $\delta(x, y) = x \sin^2 y \frac{1b}{ft^2}$; $R = [1, 3] \times [1, 9]$
- **5.** Evaluate each of the following double integrals over the given region. Begin by sketching the region of integration. Identify whether the region is x-simple, y-simple, or neither.

 - (a) $\iint_{R} \sqrt{1 x^2} dA, \ R = \{(x, y) : 0 \le x \le 1, \ 0 \le y \le x\}$ (b) $\iint_{R} (x^3 + 2y) dA, \ R = \{(x, y) : 0 \le x \le 2, \ x^2 \le y \le 2x\}$ (c) $\iint_{R} xy dA, \ R = \{(x, y) : -1 \le x \le 2, -x^2 \le y \le 1 + x^2\}$

(d)
$$\iint_{R} (1+2x+2y) dA, \ R = \{(x,y): 0 \le y \le 1, \ y \le x \le 2y\}$$

Evaluate each of the following iterated integrals by reversing the order of integration. (The first step is to identify the region of integration!)

(a)
$$\int_{0}^{1} \int_{x}^{1} \frac{\sin x}{x} dx dy$$

(b)
$$\int_{0}^{1} \int_{2\pi}^{2} e^{-x^{2}} dx dy$$

$$(c) \int_{0}^{4} \int_{\sqrt{x}}^{2} \sin(y^3) \, dy \, dx$$

(a)
$$\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy$$
 (b)
$$\int_{0}^{1} \int_{2y}^{2} e^{-x^{2}} dx dy$$
 (c)
$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin(y^{3}) dy dx$$
 (d)
$$\int_{0}^{4} \int_{\sqrt{y}}^{2} \frac{1}{\sqrt{x^{3} + 1}} dx dy$$

Hughes-Hallett problems:

In Exercises 1-4, sketch the region of integration.

1.
$$\int_{0}^{\pi} \int_{0}^{x} y \sin x \, dy \, dx$$
 2. $\int_{0}^{1} \int_{x^{2}}^{y} xy \, dx \, dy$

$$2. \int_0^1 \int_{y^2}^y xy \, dx \, dy$$

3.
$$\int_0^2 \int_0^{y^2} y^2 x \, dx \, dy$$

3.
$$\int_0^2 \int_0^{y^2} y^2 x \, dx \, dy$$
 4. $\int_0^1 \int_{x-2}^{\cos \pi x} y \, dy \, dx$

9.
$$\int_0^1 \int_0^1 y e^{xy} dx dy$$
 10. $\int_0^2 \int_0^y y dx dy$

11.
$$\int_{0}^{3} \int_{0}^{y} \sin x \, dx \, dy$$

11.
$$\int_{0}^{3} \int_{0}^{y} \sin x \, dx \, dy$$
 12. $\int_{0}^{\pi/2} \int_{0}^{\sin x} x \, dy \, dx$

For Exercises 13-16, sketch the region of integration and evaluate the integral.

For Exercises 5–12, evaluate the integral

5.
$$\int_{0}^{3} \int_{0}^{4} (4x+3y) \, dx \, dy$$
 6.
$$\int_{0}^{2} \int_{0}^{3} (x^{2}+y^{2}) \, dy \, dx$$
 13.
$$\int_{1}^{3} \int_{0}^{4} e^{x+y} \, dy \, dx$$
 14.
$$\int_{0}^{2} \int_{0}^{x} e^{x^{2}} \, dy \, dx$$

$$\int_0^1 \int_0^1 (x^2 + y^2) \, dy$$

$$\int_0^1 \int_0^2 dy$$

$$13. \int_1^1 \int_0^1 e^{x+y} \, dy \, dx$$

14.
$$\int_0^2 \int_0^x e^{x^2} dy dx$$

7.
$$\int_0^3 \int_0^2 6xy \, dy \, dx$$

$$8. \int_0^1 \int_0^2 x^2 y \, dy \, dx$$

15.
$$\int_{1}^{5} \int_{x}^{2x} \sin x \, dy \, dx$$

7.
$$\int_{0}^{3} \int_{0}^{2} 6xy \, dy \, dx$$
 8. $\int_{0}^{1} \int_{0}^{2} x^{2}y \, dy \, dx$ 15. $\int_{1}^{5} \int_{x}^{2x} \sin x \, dy \, dx$ 16. $\int_{1}^{4} \int_{\sqrt{y}}^{y} x^{2}y^{3} \, dx \, dy$

Challenge Problems [Caltech]

(10 Points)Section 5.4, Exercise 2(a). Find

$$\int_{-1}^{1} \int_{|y|}^{1} (x+y)^2 dx \, dy.$$

В.

(10 Points) Section 5.3, Exercise 2(a). Evaluate and sketch the region of integration

$$\int_{-2}^{2} \int_{0}^{y^{2}} (x^{2} + y) dx dy.$$

C.

(10 Points) Section 5.4, Exercise 8. Compute the double integral

$$\iint_D f(x,y)dA$$

where

$$f(x,y) = y^2 \sqrt{x}$$

and D is the set of (x, y) where $x > 0, y > x^2$, and $y < 10 - x^2$.

POLAR COORDINATES:

Convert each of the following double integrals into a double integral in polar coordinates and evaluate. In each case, sketch the region of integration in the xy-plane as well as in the $r\Box$ -I. plane.

(a)
$$\int_{-1}^{0} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} x \, dy \, dx$$
 (b) $\int_{0}^{\sqrt{5}} \int_{-x}^{x} 1 \, dy \, dx$ (c) $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^2}} x \, dx \, dy$

$$(b) \int_{0}^{\sqrt{5}} \int_{0}^{x} 1 \, dy \, dx$$

(c)
$$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^2}} x \, dx \, dy$$

II Compute the integral of $f(x, y) = \frac{1}{(x^2 + y^2)^{3/2}}$ over the region R of the plane defined

by $1 \le R \le 2$ and $0 \le \theta \le \pi/4$. Sketch the region.

III Alphaville is located on the coast and surrounds a bay as shown below:

The population density of Alphaville (in thousands of people per square km) is $\delta(r, \theta)$ where r and θ are the polar coordinates and distance, measured in km.

- (a) Write an iterated integral in polar coordinates that expresses the total population of Alphaville.
- (b) The population density decreases the farther you live from the shoreline of the bay; it also decreases the farther you live from the ocean. Which of the functions below best describes this situation:
 - (i) $\delta(\mathbf{r}, \theta) = (4 - \mathbf{r}) (2 + \cos \theta)$
 - $\delta(r, \theta) = (4 r)(2 + \sin \theta)$ (ii)
 - $\delta(\mathbf{r}, \theta) = (4 + \mathbf{r})(2 + \cos \theta)$
- (c) Using your choice of density from part (b), calculate the population of Alphaville.
- IV An ice-cream cone can be modeled by the region bounded by the hemisphere

$$z = \sqrt{8 - x^2 - y^2}$$

and the cone

$$z = \sqrt{x^2 + y^2}$$

Distance is measured in inches. Find the volume of the "ice-cream cone".

V Let R be the unit disk, centered at the origin. Calculate

$$\iint\limits_R \sin\!\left(x^2 + y^2\right) \! dA$$

VI A disk of radius 7 cm has density 11 gm/cm² at its center, density 0 at its edge, and its density is a linear function of the distance from the center. Find the *mass* of the disk.

VII Consider the integral
$$\int_{0}^{3} \int_{x/3}^{1} f(x, y) dy dx$$
.

- (a) Sketch the region over which the integration is defined.
- (b) Rewrite the integral with the order of integration reversed.
- (c) Rewrite the integral in polar coordinates.

 $PolarPlot[Exp[Cos[\theta]] - 2~Cos[4~\theta] + Sin[\theta~/12]^5,~\{\theta,~0,~2\pi\}]$

