Math 263     Class discussion  
25 March 2019
Triple Integrals
[image: ]
1. Suppose that the density of the unit cube [0, 1]  [0, 1]  [0, 1] is given by (x, y, z) = x + y + z gm/cm3.  Express the total mass of the cube as a triple integral, and evaluate it. 

2. Find the triple integral of the function f(x, y, z) = sin x cos(y + z) over the box [0, ][0, ][0, ].

3. Find the triple integral of the function F(x, y, z) = ax + by + cz over the rectangular box W = [0, 5]  [0, 1]  [0, 3]. 
4. Find the volume of the tetrahedron with vertices at the points (0, 0, 0), (0, 3, 0), (2, 3, 0) and (2, 3, 5).
5. Suppose the temperature at a point is given by T = xyz. Find the average temperature in the cube with opposite corners at (0, 0, 0) and (2, 2, 2). [image: ]
6.  Find the mass of the solid bounded by the xy-plane, yz-plane, xz-plane and the plane x/3 + y/2 + z/6 = 1, if the density of the solid is given by (x, y, z) = x + y.
7. Suppose the density of an object is given by xz, and the object occupies the tetrahedron with corners (0, 0, 0), (0, 1, 0), (1, 1, 0), and (0, 1, 1). Find the mass of the object.

8. Evaluate the following triple integral:


9. Describe the region of integration for the following iterated integral:


10. Describe the region of integration for the following iterated integral:


11.      Write an iterated integral that gives the mass of the solid cone bounded by z = (x2 + y2)1/2 and z = 5, if the cone’s density is given by (x, y, z) = z gm/cm3.
 
12. Suppose that the temperature (in degrees Fahrenheit) in 3-space is given by T(x,y,z) = xyz.  Find the average temperature in the box given by [0,1]  [0,2]  [0,3]. 

13.   Express as a triple integral the volume of the unit sphere.  Do not evaluate. 

14. Express as a triple integral the volume of the "ice cream cone" bounded above by x2 + y2 + z2 = 1 and below by z = (x2 + y2)1/2 – 1. 
15. Set up an iterated integral to compute the mass of the solid cone bounded by z = (x2 + y2)1/2 and z = 3, if the density function is (x, y, z) = z.
16. Find the average value of the sum of the squares of three numbers, x, y, z, where each number lies between 0 and 3.
17. Let W be the region in the first octant bounded by the planes x = 0, y = 0, z = 2, and the surface z = x2 + y2.   Compute


and sketch the region, W.
18.  Find the volume of the region cut out of the ball x2 + y2 + z2 ≤ 4 by the elliptic cylinder 2x2 + y2 = 1.

19. .    Find the volume of the region bounded by z = x2 + y2 and z = 10 – x2 – 2y2.

20.   Let W be the region bounded by z = 0, z = , y = 0, y = 1, x = 0, and x + y = 1.  Evaluate:


21. Find the region E for which  is a maximum.

22.   Find the mass of a cube with edge length 2 and density equal to the square of the distance from one corner.
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