PRACTICE FINAL-B

"Due to budget cuts we had to consolidate some departments. You'll be teaching your advanced calculus class in French."

PARTI (7 PTS EACH)

1. Find the radius of the sphere whose equation is given by:

$$x^2 - 2x + y^2 + 8y + z^2 = 19$$
.

- 2. $(i + j + k) \times (j + 2 k) =$
- 3. Find the angle (to the nearest degree) between the two vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{k}$.
- 4. Determine the distance between the origin and the plane x + 2y + 3z = 6.
- 5. Let *R* denote the annulus (or ring-shaped region) in the xy-plane, defined by $1 \le r \le 4$. Compute $\iint_R (x^2 + y^2) dA$
- 6. Write a double integral that equals the volume of the tetrahedron bounded by the three coordinate planes and the plane x + 4y + z = 8. Do not evaluate.
- 7. Let $h(x,y,z) = \ln(x^2 + y + 3z + 1) + xyz$. Let C denote the curve given by $\sigma(t) = (t, t(5t 3), 5t^4 2t^3)$ for $0 \le t \le 1$. Evaluate the line integral:

$$\int_{C} \nabla h \cdot d\vec{s}$$

8. Find the length of the curve given by $\mathbf{r}(t) = (3 \cos t) \mathbf{i} + (3 \sin t) \mathbf{j} + 2t^{3/2} \mathbf{k}, 0 \le t \le 3$.

9. Let *B* denote the ball of radius 2 centered at the origin and *S* the boundary of *B*. Let *F* denote the 3-dimensional vector field given by $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x} \, \mathbf{i} - \mathbf{y} \, \mathbf{j} + \mathbf{z} \, \mathbf{k}$. Using the Divergence Theorem, compute the flux integral:

$$\iint_{S} F \cdot n \ dS$$

10. Find a potential function for the vector field

$$\mathbf{F}(x, y) = (3x^2 \sin y + 1 - y \sin x) \mathbf{i} + (x^3 \cos y + \cos x + 2y) \mathbf{j}$$

- 11. Consider the surface defined implicitly by the equation xyz + 3z = x + 4. Find a unit vector that is normal to this surface at the point P = (1, 2, 1).
- 12. Let $\mathbf{F} = yz \, \mathbf{i} + xz \, \mathbf{j} + xy \, \mathbf{k}$ and let C be the curve parameterized by: $\mathbf{r}(t) = t \, \mathbf{i} + t^2 \, \mathbf{j} + t^3 \, \mathbf{k}$, defined for $0 \le t \le 1$. Evaluate:

$$\int_{C} F \cdot d\vec{s}$$

- 13. Let $f(x, y) = 3y + \ln(x + y)$, and let $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$. Find the directional derivative of f in the direction of \mathbf{v} at the point $\mathbf{Q} = (1, 1)$.
- 14. In which direction is the directional derivative of $z = (x^2 y^2)/(x^2 + y^2)$ at (1, 1) equal to zero?
- 15. Let T be given by the formula $T(x, y) = x(e^y + e^{-y})$. In conducting an experiment, Albertine finds that x = 2 with a maximum possible error of 0.1 and that $y = \ln 2$ with a maximum possible error of 0.02. Estimate the maximum possible error in the computed value of T.
- 16. Let $\mathbf{F} = (\mathbf{x} + \mathbf{z}) \mathbf{i} + \mathbf{x}^2 \mathbf{j} + \mathbf{y}^2 \mathbf{k}$ represent the velocity field of a fluid (velocity measured in meters/second). Compute how many cubic meters of fluid per second are crossing the xy-plane through the square $0 \le \mathbf{x} \le 1$, $0 \le \mathbf{y} \le 1$.
- 17. Suppose that a fish in the ocean is swimming according to the rule:

$$x(t) = 1 + 3t$$
, $y(t) = 3 + t$, $z(t) = \sin(2\pi t)$.

If the water temperature in degrees Fahrenheit at (x, y, z) is given by

$$T(x, y, z) = 76 + (0.01)(x \ln(y + z))$$
, find dT/dt when t = 1.

PART II (10 PTS EACH)

Answer any 6 of the following 8 problems. You may answer more than six for extra credit.

1. Use the surface (curl) integral in Stokes' Theorem to calculate the circulation of the field

$$\mathbf{F}(x, y, z) = (y^3 + z^4) \mathbf{i} + (x^2 + y^2) \mathbf{j} + (9x^2y^2 + z) \mathbf{k}$$

around the curve C, where C is the square bounded by $x = \pm 1$ and $y = \pm 1$ in the xy-plane, counterclockwise when viewed from above.

Hint: Begin by computing curl F.

2. Consider the cardioid pictured below. Click <u>here</u> for an animation.

This curve is parameterized by the equation $\sigma(t) = 3(1 + \cos t)(\cos t) \mathbf{i} + 3(1 + \cos t)(\sin t) \mathbf{j}$, $0 \le t \le 2\pi$. Using *Green's area formula*, express the area of the cardioid as a Riemann integral. *Note:* Do not evaluate the integral that you obtain.

3. *Reverse* the order of integration of the following integral. *Do not evaluate*. (Be sure sketch the region of integration.)

$$\int_{0}^{\frac{1}{16}} \int_{y^{\frac{1}{4}}}^{\frac{1}{2}} \cos(16x^{5}) \, dx \, dy$$

4. Find a vector of length 2 that is parallel to the line of intersection of the planes

$$x + 2y + z - 1 = 0$$
 and $x + y + 2z + 7 = 0$.

- 5. Using the method of Lagrange multipliers, find all points on the ellipse $x^2 + 2y^2 = 1$ where the function f(x, y) = xy achieves a local maximum or minimum.
- 6. Find and classify all critical points of $z = x^3 + y^3 + 3x^2 3y^2$.

- 7. Let *T* be the triangle in the xy-plane with vertices (0, 0), (2, 0), and (0, 4). Let *C* denote the boundary of *T* endowed with the positive orientation. Let $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{x}\mathbf{y}^2 \mathbf{i} + (\mathbf{x}^2\mathbf{y} + \mathbf{x}^2) \mathbf{j}$. Using Green's Theorem, evaluate the circulation of *F* around *C*.
- 8. Find the *average value* of the function g(x, y, z) = xyz over the cube bounded by the coordinate planes and the planes x = 2, y = 2, z = 2 in the first octant.

