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MATH 162             class discussion   17 February 2020     
Numerical Series continued   (revised)
harmonic series; telescoping series; nth term test; comparison test
1. Prove that the harmonic series diverges.   (Divergence of the harmonic series was first demonstrated by Nicole d'Oresme (ca. 1323 –1382), but was mislaid for several centuries.  Its name derives from the concept of overtones, or harmonics in music: the wavelengths of the overtones of a vibrating string are ½, 1/3, ¼, etc., of the string's fundamental wavelength. Every term of the series after the first is the harmonic mean of the neighboring terms; the phrase harmonic mean likewise derives from music.

2. Prove the nth term test for divergence.
To which of the following series does the “nth term test for divergence” apply?  Explain!




         


     
3. For n ≥ 1, let 


Determine convergence or divergence of the sequence {an}.  (Hint:  Do not try to evaluate the integral!  Calculator solutions are not accepted.  Is the sequence monotone, that is, strictly increasing or strictly decreasing?) 

4. Review geometric series.     Find the exact value of 0.123123123…

5. Carefully state the Comparison Test for positive series.

6. For each of the following infinite series, determine convergence or divergence.  In the case of convergence, find the sum of the series:




        (b)               (d)       (Hint:  Calculate the first few partial sums.)

 (e)              (f)    0.123412341234…
7.   (a)   Use the comparison test to show that  converges.   
Hint:  Compare to the telescoping series . 
 (b)     What can you say about    where p  2?         Hint:  Compare to .

 (c)     What can you say about    where p  1?    Hint:  Compare to  
8.   Find the sum of each of the following convergent series.  Show your work.


(a)           (b)         (c)     5.314314314314314…

9.    (University of Michigan) Consider the series   
[image: ]
[bookmark: _GoBack]10.  (University of Michigan) Does the following series converge or diverge?  Justif[image: ]
11. (University of Michigan)  Determine the convergence or divergence of the following series.    Justify your answer.


[image: Résultats de recherche d'images pour « escher infinite series »]
M. C. Escher:  Circle Limit






There is more danger of numerical sequences continued indefinitely than of trees growing up to heaven. Each will some time reach its greatest height. 
- Friedrich Ludwig Gottlob Frege,  Grundgesetz der Arithmetik (1893)
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Prove that the 


harmonic 


series


 


diverges.   


(Divergence of the harmonic series was first demonstrated by 


Nicole d'Oresme (ca. 1323 


–
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not


 


try to evaluate the integral!  


Calculator solutions are not accepted.
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4.


 


Review 


geometric 


series.     Find the exact value of 0.123123123…
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Carefully state the 


Comparison Test


 


for positive series.
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For each of the following infinite series, determine 
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convergence, find the sum of the series:
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Numerical Series continued   (revised) 

harmonic series; telescoping series; n

th 

term test; comparison test 

1. Prove that the harmonic series diverges.   (Divergence of the harmonic series was first demonstrated by 

Nicole d'Oresme (ca. 1323 –1382), but was mislaid for several centuries.  Its name derives from the concept 

of overtones, or harmonics in music: the wavelengths of the overtones of a vibrating string are ½, 1/3, ¼, etc., of 

the string's fundamental wavelength. Every term of the series after the first is the harmonic mean of the 

neighboring terms; the phrase harmonic mean likewise derives from music. 

 

2. Prove the n

th

 term test for divergence. 

To which of the following series does the “n

th

 term test for divergence” apply?  Explain! 

5

)(

1









n

n

a

n

    

n

n

n

b





















1

1

1)(

  

n

c

n

1

)(

1







   

3

1

1

)(

n

d

n







 

)arctan()(

1

ne

n







     

n

n

nf

/1

1

)(







 

3. For n = 1, let  
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Determine convergence or divergence of the sequence {a

n

}.  (Hint:  Do not try to evaluate the integral!  

Calculator solutions are not accepted.  Is the sequence monotone, that is, strictly increasing or strictly 

decreasing?)  

 

4. Review geometric series.     Find the exact value of 0.123123123… 

 

5. Carefully state the Comparison Test for positive series. 

 

6. For each of the following infinite series, determine convergence or divergence.  In the case of 

convergence, find the sum of the series: 
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(f)    0.123412341234… 
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8.   Find the sum of each of the following convergent series.  Show your work. 
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(c)     5.314314314314314… 
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