Math 162      Class discussion     19 February 2020
More on Positive series  
(Integral test, ratio Test, Root Test, Limit Comparison test)
[image: Résultats de recherche d'images pour « zeno's paradox comic »]
1.    For each of the following series,  an, determine convergence or divergence.  Justify each answer. 



       



       Hint: First, explain why, for small positive x, sin x > x/2.  



        




             



              



        



        


          
          2.      (a)      Explain why the sequence n1/n converges.  What is its limit?
(b)    Show that the following series converges.  (Hint:  Use the root test.)


(c)    Using the fact that the series in (b) converges, explain why n = o((ln n)n).
(d)     Determine if the following series converges or diverges.  (Hint:  Use the Comparison Test.)


3.  (University of Michigan)  Suppose an and bn are sequences of positive numbers with the following properties.
[image: ]
[image: ]
[image: ]
4. (University of Michigan) rigorously determine whether or not the following series converge or diverge.  
   [image: ]                          [image: ]
5.   State Stirling’s formula.    Using Stirling’s formula write 100! in scientific notation.

[bookmark: _GoBack]With the exception of the geometrical series, there does not exist in all of mathematics a single infinite series the sum of which has been rigorously determined.  In other words, the things which are the most important in mathematics are also those which have the least foundation.
-  Niels Henrik Abel  (1802 – 1829)
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Math 162         Class discussion       19 February 2020   More on  Positive  series       (Integral test, ratio Test, Root Test, Limit Comparison test)     1 .       For each of the following se ries ,     a n ,  determine  convergence   or  divergence .     Justify each answer.    
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   Hint:   First, e xplain why, for small  positive  x ,  sin x > x/2.    
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             2 .         (a)          Explain why the  sequence   n 1/n   converges.  What is its limit?   (b)    Show that the following  series   converges.  ( Hint:    Use the root test.)  
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  (c)       Using the fact that the series in (b) converges, explain why   n =  o ( (ln n) n ).   (d)        Determine if the following series converges or diverges.   ( Hint:    Use the Comparison Test.)  
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  3.   (University of  Michigan )    Suppose a n   and b n   are sequences of positive numbers with the following properties.  

