MATH 162: CLASS DISCUSSION

13 January 2020

INTEGRATION BY PARTS

1. Using *integration by parts*, find the indefinite integral of each of the following functions.

(a) x sin x	(b) $x^2 \sin x$	(c) x ln x
(d) ln x	(e) $(\ln x)^2$	(f) $x e^{3x}$
(g) arcsin(2x)	(h) x arc tan x	(i) sec ³ x

2. Evaluate: $\int e^x \cos x \, dx$. What makes this integral "unusual"?

$(a) \int e^{3x} \cos 4x dx$	(b) $\int \ln \sqrt{x} \ dx$	(c) $\int (arc\sin x)^2 dx$
(d) $\int_1^2 t^2 \ln t dt$	$(e) \int_0^{\frac{1}{2}} x \cos(\pi x) dx$	$(f) \int \frac{x^3}{\sqrt{1+x^3}} dx$

3. Using an appropriate substitution followed by integration by parts, find an antiderivative for each of the following.

(a) $e^{\sqrt{x}}$	$(b) e^{\cos x} \sin(2x)$	$(c) x \ln(1+x)$

4. Using an appropriate substitution followed by integration by parts, find the value of each of the following Riemann integrals.

$(a) \int_{\sqrt{\pi/2}}^{\sqrt{\pi}} \alpha^3 \cos^2 \alpha \ d\alpha$	$(b) \int_0^{\pi} e^{\cos w} \sin(2w) dw$	$(c) \int_1^2 (\ln x)^2 dx$
---	---	-----------------------------

5. (a) Prove the reduction formula:

$$\int x^n \sin x \, dx = -x^n \cos x + n \int x^{n-1} \cos x \, dx$$

(b) Using this reduction formula, compute an anti-derivative of $x^3 \sin x$.

6. (a) Verify the reduction formula:

$$\int \sec^{n} x \, dx = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$

- (b) Using this reduction formula, compute anti-derivatives of $\sec^4 x$ and $\sec^5 x$.
- 7. Solve each of the following differential equations.

dy		$\ln x$
\overline{dt}	_	$\overline{x^2}$

$$\frac{dy}{dx} = xe^{-x}$$

$$\frac{dy}{dx} = \sec^5 x$$

Hint: $sec^5 x = sec^2 xsec^3 x$

Common integration is only the memory of differentiation.

- <u>Augustus de Morgan</u> (1806 – 1871)

Nature laughs at the difficulties of integration.

- Pierre-Simon de Laplace (1749 - 1827)

