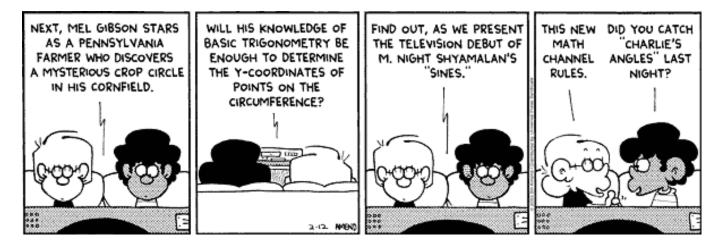
MATH 162

CLASS DISCUSSION

17 JANUARY 2020

TRIG SUBSTITUTION



Review

1) Solve the *differential equations*

(a)
$$\frac{dy}{dx} = tan^3 x \sec^2 x + \tan x$$
 (b) $\frac{dy}{dx} = \sin^3 x \cos^2 x + \sin x \cos x$

- 2) Find the area between the curves
 - (a) $y = \sin^2 x$ and $y = \sin^3 x$ over the interval $[0, \pi]$.
 - (b) $y = \tan x$ and $y = \tan^2 x$ over the interval $[0, \pi/4]$.

4) A particle travels on a straight line with velocity function $v(t) = \sin(\omega t) \cos^2(\omega t)$. Find its position function s(t) if f(0) = 0. (This is called an initial-value problem.)

5) Find the indefinite integral of

(a)
$$sin^2 x cos^2 x$$
 (b) $sec^9 x tan^5 x$ (c) $sec^4 x tan^6 x$

6) Challenge problem (U. Michigan, exam 1, Oct 2016)

Suppose that f is a twice-differentiable function that satisfies

$$f(0) = 1$$
, $f(2) = 2$, $f(4) = 4$, $f'(2) = 3$, $\int_0^2 f(x) \, dx = 5$, $\int_2^4 f(x) \, dx = 7$

Evaluate each of the following integrals:

(a) $\int_0^2 x f'(x) dx$ (b) $\int_{\sqrt{2}}^2 x f'(x^2) dx$ (c) $\int_0^2 x^3 f'(x^2) dx$

Solutions:

http://www.math.lsa.umich.edu/courses/116/Exams/2016_17fall16/Exam1/exam1_Solutions_F16.pdf

TRIG SUBSTITUTIONS By making an appropriate trig (or hyperbolic) substitution, convert each of the following integrals to trig integrals. Do not evaluate.

I. (a)
$$\int \frac{x}{(x^2+1)^3} dx$$
 (b) $\int \frac{x^3}{\sqrt{1-x^2}} dx$ (c) $\int \frac{x^2}{\sqrt{x^2-1}} dx$ (d) $\int \frac{\sqrt{1-x^2}}{x^2} dx$

II.

Exercises from UC Davis. **SOLUTIONS** at <u>https://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/trigsubdirectory/TrigSub.html</u>

• PROBLEM 1 : Integrate $\int \sqrt{1-x^2} dx$ • PROBLEM 2 : Integrate $\int \frac{(x^2-1)^{3/2}}{x} dx$. • PROBLEM 3 : Integrate $\int \frac{1}{(1-x^2)^{3/2}} dx$. • PROBLEM 10 : Integrate $\int \sqrt{x^2-4} dx$.

• PROBLEM 4 : Integrate
$$\int \frac{\sqrt{x^2+1}}{x} \, dx$$
. • PROBLEM 11 : Integrate $\int \frac{x}{\sqrt{x^4-16}} \, dx$.

• PROBLEM 5 : Integrate
$$\int x^3 \sqrt{4-9x^2} \, dx$$
 • PROBLEM 12 : Integrate $\int \frac{1}{\sqrt{x^2-4x}} \, dx$.

• PROBLEM 6 : Integrate
$$\int \frac{\sqrt{1-x^2}}{x} \, dx$$
. • PROBLEM 13 : Integrate $\int \frac{x}{\sqrt{x^2+4x+5}} \, dx$.

• PROBLEM 7 : Integrate
$$\int \frac{\sqrt{x^2-9}}{x^2} \, dx$$
. • PROBLEM 14 : Integrate $\int x \cdot \sqrt{10x-x^2} \, dx$.

• PROBLEM 8 : Integrate
$$\int \frac{\sqrt{x^2+1}}{x^2} dx$$
. • PROBLEM 15 : Integrate $\int \sqrt{\frac{x-1}{x}} dx$.

• PROBLEM 9 : Integrate
$$\int \sqrt{x^2 + 25} \, dx$$
. • PROBLEM 16 : Integrate $\int \sqrt{1 - x} \cdot \sqrt{x + 3} \, dx$

This is a tricky domain because, unlike simple arithmetic, to solve a calculus problem - and in particular to perform integration - you have to be smart about which integration technique should be used: integration by partial fractions, integration by parts, and so on.

- Marvin Minsky