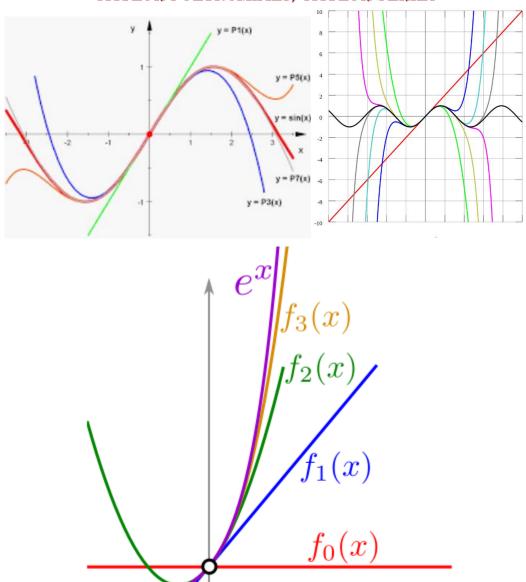
MATH 162 CLASS DISCUSSION

9[™] MARCH 2020

TAYLOR POLYNOMIALS, TAYLOR SERIES



- 1.
- Find the 5^{th} degree Maclaurin polynomial of e^{3x} . Find the 4^{th} degree Maclaurin polynomial of $(1-x)e^x$. 2.
- Find the 3rd degree Taylor polynomial of $\frac{1}{1+x^2}$ centered at c = 1. 3.
- Find the 5th degree Maclaurin polynomial of $\frac{3x-\sin(3x)}{x^3}$. 4.
- Find the first four *non-zero* terms of the Maclaurin series of $\exp(x^2 + x)$. 5.

- Write the Maclaurin series expansion for $\frac{x}{1+x^2}$ and for $\ln(1+x^2)$. Find the interval 6. of convergence for each series. What is the relationship between these two series?
- Using an appropriate power series expansion, compute $\sum \frac{n}{7^n}$. 7. (*Hint*: Differentiate an appropriate geometric series.)
- 8. Find the Maclaurin series of each of the functions: 2/(3-x), 5/(4-x), and (23-7x)/[(3-x)(4-x)].
- Find the 99^{th} derivative of 1/(a bx) by using an appropriate power series. 9.
- Find the *binomial expansion* of $(1 + x)^{-4}$. What is its radius of convergence? 10.
- Find the Maclaurin series expansion of $1/(1 + x^2)^{1/2}$. 11.
- Find the 23^{rd} derivative of $1/(1 + x^2)^{1/2}$. 12.
- Using an appropriate Maclaurin series, evaluate the limit of $\frac{\sin x \tan x}{x^3}$ as $x \to 0$ 13. without using l'Hôpital's rule.
- 14.
- Evaluate the limit of $\frac{\ln x}{x-1}$ as $x \to 1$ without using l'Hôpital's rule. Evaluate the limit of $\frac{1}{\sin x} \frac{1}{x}$ as $x \to 0$ without using l'Hôpital's rule. 15.
- Evaluate the limit of $\frac{\sin x x}{\tan x x}$ as $x \to 0$ without using l'Hôpital's rule. 16.
- Evaluate the limit of $\frac{\ln x}{e^x e}$ as $x \to 1$ without using l'Hôpital's rule. 17. (Hint: Let t = x - 1.)
- Find $\lim_{x\to 0} \frac{e^{x^2}-1}{\cosh(3x)-1}$ without using l'Hôpital's rule. 18.
- State Taylor's inequality. Using this inequality, prove that the Maclaurin series 19. of e^x , $\sin x$, $\cos x$, and $\cosh x$ each converge to the given function everywhere.

Colin Maclaurin (1698 – 1746)

Brook Taylor (1685 - 1731)