MATH 162

PRACTICE TEST II

March 2020

1) For each given sequence, determine *convergence* or *divergence*. If the sequence converges, find its limit. Justify your answers.

(a)
$$a_n = \frac{100^n + 1789^n}{n! + 7^n}$$
 (b) $b_n = \left(1 + \frac{1}{3n}\right)^n$ (c) $c_n = \frac{\ln(n + 2020\pi)}{\ln n}$
(d) $d_n = \frac{\cos\left(\frac{\pi}{n}\right)}{n}$ (e) $e_n = \int_0^n e^{-\pi t} dt$ (f) $f_n = \sqrt{\frac{n+1}{n} + \frac{\sin(n^2)}{n^2} + e^{-\frac{\pi}{n}} + \frac{e^n}{\sinh n}}$
 $(\ln \ln n)^{2525}$

(g)
$$g_n = \frac{(\ln \ln n)^n}{n}$$

- 2) Give an example of two *divergent* numerical sequences whose sum is *convergent*.
- 3) Consider the following recursively defined sequence: $c_1 = 7, c_2 = 4$, and

$$c_{n+1} = \frac{\left(c_n + \frac{5}{\left(c_{n-1}\right)^2}\right)}{2} \quad for \ n \ge 2$$

- (a) Find the values of c_3 , c_4 and c_5 .
- (b) Assuming that the limit of c_n exists, find its value.
- 4) Find $\lim_{n\to\infty} n^{\frac{1}{\ln n}}$ (Show your work!)
- 5) For each of the following sequences, determine convergence or divergence. In the case of convergence, find the limit of the sequence.

(a)
$$x_n = e^{\frac{1}{n}}$$
 (b) $y_n = \frac{n!}{n+1}$ (c) $z_n = \frac{\sin n}{n} + \frac{5}{n}$
(d) $c_n = \frac{3(2n+1)^3}{(1-n)^2(4n+13)}$ (e) $a_n = \sec\left(\ln\left(\sin^4\left(\frac{\pi}{2} + \frac{1}{n^2}\right)\right)\right)$

6) For each of the following infinite series, determine *convergence* or *divergence*. In the case of convergence, *find the sum of the series:*

(a)
$$\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$$
 (b) $\sum_{n=0}^{\infty} \frac{5}{9^n}$ (c) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$
(d) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ (e) $\sum_{n=1}^{\infty} \cos\left(\frac{5}{n}\right)$ (f) 0.129912991299...

7) For each series below, determine absolute convergence, conditional convergence, or divergence. Justify each answer.

(a)
$$\sum_{n=3}^{\infty} (-1)^n \frac{13}{(\ln n)^{13}}$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \frac{(k+3)(k^2+5)}{(k+13\ln k)^4}$
(c) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{(1+\frac{1}{n})^{n^2}}$ (d) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(e^n+e^{-n})}$ (e) $\sum_{n=1}^{\infty} (-1)^n \frac{n^{13}}{(n+13)!}$

8) For each power series below, determine the *radius of convergence* and the *interval of convergence*. Study the behavior of each power series at the *endpoints*.

(a)
$$\sum_{n=1}^{\infty} \frac{13^n}{n(n+13)} x^n$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n(n+3)(n+11)} (x-4)^n$ (c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n+7}} (x+13)^n$

- 9) (a) Find the 3rd order Maclaurin polynomial of *cosh* x = ¹/₂ (e^x + e^{-x})
 (b) Find the 5th order Taylor polynomial of *cos* x centered at x = π/2.
- 10) Find the 4th order Taylor polynomial of e^x centered at x = 2.
- **11**) Find the 3rd order Maclaurin polynomial of

$$f(x) = 4 + (x+13)^2 + (x+13)^3$$

12) By differentiating the power series expansion of $y = \frac{1}{1-x}$, find the value of

$$\sum_{k=0}^{\infty} \frac{k}{13^k}$$

13) Find the *first five* non-zero terms of the Maclaurin series expansion of

$$h(x) = (1 + 2x^2) e^{3x}.$$

- 14) Let $f(x) = x^8 e^{5x}$. Compute $f^{(100)}(0)$. Do not simplify your answer.
- **15**) Find the *radius of convergence* of the power series:

$$\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7)\dots(2n-1)} x^n$$

16) Find the *radius of convergence* of the power series:

$$\sum_{n=0}^{\infty} n! x^{2^n}$$

17) Find the *radius of convergence* of the power series:

$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n} x^n$$

18) Without using l'Hôpital's rule, calculate the following limit. Show your work!

$$\lim_{t \to 0} \frac{te^{4t} - \sin(3t) + 2t - 4t}{t^3}$$

- **19**) Let $G(x) = x^3 \cosh(3x)$. Using an appropriate Maclaurin series, compute $G^{(2020)}(0)$. (Do not try to simplify your answer.)
- **20)** Find the first four non-zero terms of the Maclaurin series for each of the following:

(a)
$$\frac{e^{2x}}{\cosh x}$$
 (b) $\frac{\ln(1+x)}{1+x^2}$ (c) $e^{x^2}\sin 2x$

21) Using *division* of power series, find the first three non-zero terms of the Maclaurin series expansion of

$$f(x) = \frac{e^{2x} + 1}{\cos x}$$

22) Using multiplication of power series, find the first four non-zero terms of the Maclaurin series expansion of

$$g(x) = e^{x^2} (1 + x^2 + x^3)$$

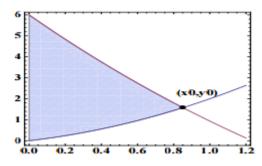
23) Determine the *interval of convergence* of the following power series. (You need not study end-point behavior.)

$$\sum_{n=1}^{\infty} \frac{n^{13} \, 13^n}{\sqrt{n+2016}} \, (x-13)^n$$

24) Analyze the behavior of the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 4}}{\left(n^{1/3} + 1789\right)^5}$$

- 25) What is the relationship between cosh x and cos x? between sinh x and sin x? State *Euler's formula*.
- **26**) [University of Michigan final exam question] The graph shows the area between the graphs of $f(x) = 6 \cos(\sqrt{2x})$ and $g(x) = x^2 + x$. Let (x_0, y_0) be the intersection point between the graphs of f(x) and g(x).



- a) Compute P(x), the function containing the first three nonzero terms of the Taylor series about x = 0 of $f(x) = 6 \cos(\sqrt{2x})$.
- b) Use P(x) to approximate the value of x_0 .

- c) Use P(x) and the value of x_0 you computed in the previous question to write an integral that approximates the value of the shaded area.
- d) Graph f(x) and g(x) in Wolfram Alpha or your calculator. Use the graphs to find an approximate value for x_0 .
- e) Write a definite integral in terms of f(x) and g(x) that represents the value of the shaded area. Find its value using Wolfram Alpha or your calculator.
- 27) [University of Michigan final exam question] (a) Find the Maclaurin series of sin(x²). Your answer should include a formula for the general term in the series.
 - (b) Let *m* be a positive integer, find the Maclaurin series of $cos(m\pi x)$. Your answer should include a formula for the general term in the series.

(c) Use the second degree Maclaurin polynomials of $sin(x^2)$ and $cos(m\pi x)$ to approximate the value of b_m , where

$$b_m = \int_{-1}^1 \sin(x^2) \cos(m\pi x) \, dx$$

(The number b_m is called a *Fourier coefficient of the function sin*(x^2). These numbers play a key role in Fourier analysis, a subject with widespread applications in engineering and the sciences.)

Jean-Baptiste Joseph Fourier (1768 – 1830)