1. [10 pts] List the following 13 functions in increasing order of their growth rates as $n \to \infty$. In case of a tie, list the functions on the same line. For example, $3n^2$ and $5n^2$ have the same order of magnitude.

$$\sqrt[3]{n^6}$$
, n , $\frac{e^{2n}}{1234567}$, $\ln \ln n$, e^n , $n \ln n$, $\left(\frac{n^7 + 2020}{n^6 + 1}\right)$
 $ln\sqrt{n^2 + n + 1}$, $n^5 + \ln n$, $e^{\ln n}$, \sqrt{n} , 2020 n

Solution: Note that:

³√n⁶ is asymptotic to n².
 ^{e²ⁿ}/₁₂₃₄₅₆₇ is asymptotic to e²ⁿ
 (^{n⁷+2020}/_{n⁶+1})² is asymptotic to n².
 (1) ln√n² + n + 1 is asymptotic to ln n.
 n⁵ + ln n is asymptotic to n⁵
 n is equal to (and thus asymptotic) to e^{ln n} = n
 2020 n is asymptotic to n

Hence, the line-up, in increasing order is:

$$\ln \ln n$$

$$\ln \sqrt{n^{2} + n + 1}$$

$$\sqrt{n}$$
n, same growth rate as $e^{\ln n}$
n ln n
$$\sqrt[3]{n^{6}} \quad same \text{ growth rate as } \left(\frac{n^{7} + 2020}{n^{6} + 1}\right)^{2} \text{ or } n.$$

$$n^{5} + \ln n$$

$$e^{n}$$

$$\frac{e^{2n}}{1234567}$$

2. [10 pts] Suppose b is a positive constant. Find the exact value of the convergent improper integral $\int_0^\infty e^{-bx} dx$

Solution: Evaluating the Riemann integral $\int_0^c e^{-bx} dx = -\frac{1}{b} (e^{-bc} - e^0) = \frac{1}{b} (1 - e^{-bc})$

Next, letting $c \to \infty$ and noting that b > 0, $\frac{1}{b} (1 - e^{-bc}) \to 0$

Hence $\int_0^\infty e^{-bx} dx = \lim_{c \to \infty} \left(\int_0^c e^{-bx} dx \right) = 1.$

3. *[10 pts]* Consider the improper integral given below. Determine whether it is convergent or divergent. If it i convergent, evaluate.

Note: Do not use a more general result from class to answer this question.

$$\int\limits_{e} \frac{1}{x\sqrt{\ln x}} dx$$

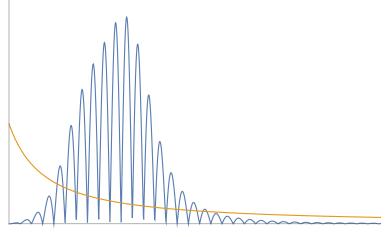
Solution: Note that the usual p-test does not apply here. Instead, we evaluate the integral.

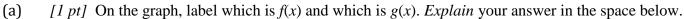
$$\int_{e}^{c} \frac{1}{x\sqrt{\ln x}} dx = \int_{e}^{c} (\ln x)^{-\frac{1}{2}} \frac{1}{x} dx = 2(\ln x)^{\frac{1}{2}} \left[\int_{e}^{c} = 2(\sqrt{\ln c} - \sqrt{\ln e}) = 2(\sqrt{\ln c} - 1) \to \infty \right]$$

Thus, the improper integral diverges.

Extra Credit

Below are graphs of the function $f(x) = \frac{1}{(x+0.9)^{0.9}}$ and a mystery function g(x) satisfying g(0) = 0.





Answer: The function $y = \frac{1}{(x+0.9)^{0.9}}$ is a hyperbola that is decreasing. Hence the oscillating function must be g.

(b) [3 pts] Based on the graph, determine if it is possible to tell whether the improper integral $\int_0^\infty g(x)dx$ converges or diverges. Justify your answer.

Answer: No, it is not possible to tell if the oscillating function converges or diverges. Note that the given function, $f(x) = \frac{1}{(x+0.9)^{0.9}}$ is just a horizontal translation of the more familiar curve $h(x) = \frac{1}{x^{0.9}}$. By the p-test, $\int_0^\infty h(x) dx$ diverges, and so must $\int_0^\infty f(x) dx$. Now, we cannot use the comparison test, since g(x) lies below the graph of f(x) for large x.