CLASS DISCUSSION MATH 201:

14 JANUARY 2020: PART B

INTRODUCTION TO SETS

STUDY CAREFULLY SECTIONS 1.1 – 1.4 OF HAMMACK

The following notation is commonly used: **Z** for the set of integers; **N** for the set of positive integers (the "natural numbers"), **O** for the set of all rational numbers; **R** for the set of all real numbers, and \emptyset for the empty set.

- **A.** List the elements of each of the following sets: (a) $\{x \in \mathbb{R} : x^4 1 = 0\}$
- (b) $\{x \in Z : -1/3 < x < 5.99\}$

- (c) $\{x \in N \mid x \le 4\}$
- (d) {unicorns| unicorn lives in Illinois}
- (e) {}
- (f) $\{\phi\}$

- $(g) \{1, \{2\}\}$
- **B.** Write in set notation: (a) $\{4, 9, 16, 25, ...\}$ (b) $\{1/1, 1/3, 1/5, 1/7, ...\}$ (c) $\{...1/8, \frac{1}{4}, \frac$

- **C.** Determine the cardinality of each set in (1).
- **D.** Find cardinality of each of the following sets:

{Kansas City, Phoenix, Sacramento, Denver}

$$\{p \in N \mid p \text{ is prime and } p \leq 25\}$$

$$\{\{1\}, \{2, \{3, 4\}\}, \emptyset\}$$

$$\{\{1,4\}, a, b, \{\{3,4\}\}, \{\phi\}\}\$$

$$\{x \in Z \mid |x| < 10\}$$

E. Sketch the following sets of points in the xy-plane.

$$\left\{ (x,y) : x,y \in \mathbb{R}, x^2 + y^2 \le 1 \right\}$$

$$\{(x, y) : x, y \in \mathbb{R}, y \ge x^2 - 1\}$$

$$\{(x,y): x,y \in \mathbb{R}, x > 1\}$$

$$\{(x, x+y): x \in \mathbb{R}, y \in \mathbb{Z}\}$$

$$\left\{ (x, \frac{x^2}{y}) : x \in \mathbb{R}, y \in \mathbb{N} \right\}$$

$$\{(x, y) \in \mathbb{R}^2 : (y - x)(y + x) = 0\}$$

$$\{(x, y) \in \mathbb{R}^2 : (y - x^2)(y + x^2) = 0\}$$

- **1.** Suppose $A = \{1, 2, 3, 4\}$ and $B = \{a, c\}$.
 - (a) $A \times B$ (b) B × A
- (c) $A \times A$ (d) $B \times B$
- (e) Ø × B
- (g) $A \times (B \times B)$ (h) B^3

- **2.** Suppose $A = \{\pi, e, 0\}$ and $B = \{0, 1\}$.
 - (a) $A \times B$
- (c) $A \times A$
- (e) A × Ø
- (g) $A \times (B \times B)$

- (b) B × A
- (d) $B \times B$
- (f) $(A \times B) \times B$

(f) $(A \times B) \times B$

(h) $A \times B \times B$

- 3. $\{x \in \mathbb{R} : x^2 = 2\} \times \{a, c, e\}$
- **4.** $\{n \in \mathbb{Z} : 2 < n < 5\} \times \{n \in \mathbb{Z} : |n| = 5\}$
- **6.** $\{x \in \mathbb{R} : x^2 = x\} \times \{x \in \mathbb{N} : x^2 = x\}$ 7. $\{\emptyset\} \times \{0,\emptyset\} \times \{0,1\}$
- **5.** $\{x \in \mathbb{R} : x^2 = 2\} \times \{x \in \mathbb{R} : |x| = 2\}$
- 8. {0,1}⁴

Sketch these Cartesian products on the x-y plane \mathbb{R}^2 (or \mathbb{R}^3 for the last two).

- **9.** $\{1,2,3\} \times \{-1,0,1\}$
- **15.** $\{1\} \times [0,1]$
- **10.** $\{-1,0,1\} \times \{1,2,3\}$
- **16.** $[0,1] \times \{1\}$

11. $[0,1] \times [0,1]$

- **17.** N×ℤ
- **12.** $[-1,1] \times [1,2]$ **13.** $\{1,1.5,2\} \times [1,2]$
- **18.** $\mathbb{Z} \times \mathbb{Z}$ **19.** $[0,1] \times [0,1] \times [0,1]$
- **14.** [1,2] × {1,1.5,2}
- **20.** $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \times [0,1]$

G. Find the power set of each of the following sets:

1. {1,2,3,4}

5. {ø}

2. $\{1,2,\emptyset\}$

6. {R,Q,N}

{{ℝ}}

7. {R, {Q, N}}

4. Ø

- **8.** {{0,1},{0,1,{2}},{0}}
- **9**. in general if |S| = n, what is |P(S)|?

H.

Write out the following sets by listing their elements between braces.

- **9.** $\{X: X \subseteq \{3,2,a\} \text{ and } |X| = 2\}$
- **11.** $\{X: X \subseteq \{3,2,a\} \text{ and } |X| = 4\}$
- **10.** $\{X \subseteq \mathbb{N} : |X| \le 1\}$
- **12.** $\{X: X \subseteq \{3,2,a\} \text{ and } |X|=1\}$

Decide if the following statements are true or false. Explain.

13. $\mathbb{R}^3 \subseteq \mathbb{R}^3$

15. $\{(x,y): x-1=0\} \subseteq \{(x,y): x^2-x=0\}$

14. $\mathbb{R}^2 \subseteq \mathbb{R}^3$

16. $\{(x,y): x^2 - x = 0\} \subseteq \{(x,y): x - 1 = 0\}$

I.

Find the indicated sets.

- 1. $\mathscr{P}(\{\{a,b\},\{c\}\})$
- 7. $\mathscr{P}(\{a,b\}) \times \mathscr{P}(\{0,1\})$
- **2.** $\mathscr{P}(\{1,2,3,4\})$
- 8. $\mathscr{P}(\{1,2\} \times \{3\})$

3. 𝒫({{∅},5})

9. $\mathscr{P}(\{a,b\} \times \{0\})$

4. 𝒫({ℝ,Q})

10. $\{X \in \mathcal{P}(\{1,2,3\}) : |X| \le 1\}$

5. $\mathscr{P}(\mathscr{P}(\{2\}))$

- **11.** $\{X \subseteq \mathcal{P}(\{1,2,3\}) : |X| \le 1\}$
- **6.** $\mathscr{P}(\{1,2\}) \times \mathscr{P}(\{3\})$
- **12.** $\{X \in \mathcal{S}(\{1,2,3\}) : 2 \in X\}$

Suppose that |A| = m and |B| = n. Find the following cardinalities.

- **13.** |\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))|
- 17. $|\{X \in \mathcal{P}(A) : |X| \le 1\}|$

14. $|\mathscr{P}(\mathscr{P}(A))|$

18. $|\mathscr{P}(A \times \mathscr{P}(B))|$

15. $|\mathscr{P}(A \times B)|$

- 19. $|\mathscr{P}(\mathscr{P}(\mathscr{P}(A \times \emptyset)))|$
- **16.** $|\mathscr{P}(A) \times \mathscr{P}(B)|$
- **20.** $|\{X \subseteq \mathcal{P}(A) : |X| \le 1\}|$

