MATH 201: CLASS DISCUSSION, 16 JANUARY 2020

NAÏVE SET THEORY CONTINUED

0. Review:

- (a) Which of the following statements are ambiguous? Why?
 - (i) Give me a cake or a pretzel.
 - (ii) Albertine gave a bath to her dog wearing an orange hat.
 - (iii) Visiting relatives can be boring.
 - (iv) I promise that I will give you a ring tomorrow.
- (b) Find the *cardinality* of each of the following sets.
 - (i) $A = \{x: x \text{ is a prime number and } x < 19\}.$

(ii)
$$B = \{1, 3, \{4, 5, \{2020\}\}\}$$

1

- (iii) $C = \emptyset$
- (c) What is meant by the term Cartesian product? Give examples (cf, cd 14 Jan, part B)

- **1.** What is meant by the term *subset*?
- 2. What is meant by the term *power set* of a set? Consider examples (cf, cd 14 Jan, part B)
- **3.** Let L be a finite set. Find the cardinality of $\mathcal{P}(L)$ if the cardinality of L is

(a) 0 (b) 1 (c) 2 (d) 3 (e) n, where n is a non-negative integer.

4. Let A, B and C be three sets such that:

 $A = \{2, 4, 6, 8, 10, 12\}, B = \{3, 6, 9, 12, 15\} and C = \{1, 4, 7, 10, 13, 16\}.$ Find:

- (i) $A \cup B$ (ii) $A \cap B$ (iii) $B \cap A$ (iv) $B \cup A$ (v) $B \cup C$ (vi) A B
- (vii) $A (B \cup C)$ (viii) $A (B \cap C)$
- (ix) Is $A \cup B = B \cup A$? (x) Is $B \cap C = B \cup C$?
- 5. Let A be a subset of a universe X. What is meant by the term *complement of A*? This is denoted by \overline{A} . (Note that is many other textbooks and websites, the alternative notation, A^c, may be used.)

- 6. Complete each of the following. Use a Venn diagram to justify each answer.
 - (a) Associativity of union $A \cup (B \cup C) =$
 - (b) Associativity of intersection

 $A \cap (B \cap C) =$ (c) Commutativity (i) $A \cup B =$ (ii) $A \cap B =$ (d) Double complement

$$(\bar{A})$$

(e) Complementation

(i) $A \cup \overline{A} =$

(ii)
$$A \cap \overline{A} =$$

- 7. *True or False?* Give a general argument or a *counterexample*.
 - (a) $A \cup B \subseteq A \cap B$
 - (b) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$
 - (c) $A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$
 - (d) $A (B \cap C) = (A B) \cup (A C)$
 - (e) $A-B=B^c-A^c$
 - (f) $(A \cup B) \cap C \supseteq (A \cup B) \cap (A \cup C)$
 - (g) $\mathcal{P}(E) \cap \mathcal{P}(F) = \mathcal{P}(E \cap F)$
 - (h) $\mathcal{P}(E) \cup P(F) \subseteq \mathcal{P}(E \cup F)$

