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1. OVERVIEW

My research concerns subfactors: inclusions of von Neumann algebras with triv-
ial centers. My main project is the classification of small-index subfactors and the
construction of exotic subfactors. Many examples of subfactors are known, as sub-
factors can be constructed from many already well-understood algebraic objects
such as groups, quantum groups or conformal field theories. However, there are
also exotic subfactors which do not arise in this way. Very few of these are known.

My results include:
• An alternate construction of Haagerup’s exotic subfactor, using planar al-

gebras [28].
• A planar-algebras construction of a new exotic subfactor, called the ex-

tended Haagerup subfactor [4].
• Contributing to the classification of subfactors with index less than 5 [25].
• Uniqueness of certain subfactors with index slightly more than 5 (work in

progress) [23].
My future projects include:
• Proving theorems which make it possible to write an automated subfactor

construction program in the ‘FusionAtlas’ (work in progress) [23, 22].
• Classifying subfactors up to an index higher than 5.
• Investigating the boundary between ‘tame’ and ‘wild’ behavior of subfac-

tors.
• Proving diagrammatically that the higher Haagerup subfactors do not exist.

Throughout, “Questions” are motivational (and probably hard), while “Prob-
lems” are more approachable.

2. HISTORY

To understand von Neumann algebras, one can start with factors: von Neumann
algebras having trivial center. Since von Neumann algebras have no two-sided
ideals, every map between two von Neumann algebras is an inclusion; so under-
standing subfactors is equivalent to understanding all maps between factors.

In general, subfactors can be quite hard to get your hands on; it’s good to have
invariants to tell them apart. The first example of these was Jones’ index, a real
number measuring the relative size of the subfactor, which Jones [14] famously
showed must lie in

{4 cos2(π
n
)|n = 3, 4, 5, . . .} ∪ [4,∞].

The planar algebra of a subfactor, built from iterating Jones’ basic construction, is
a stronger invariant. It has a graded algebra structure, and it also has a diagram-
matic structure, in which certain pictures can be interpreted as maps among the
component algebras. This example led Jones to define more general planar alge-
bras in [15]. Since then, planar algebras have been applied more broadly, not just
to subfactors but to problems in knot theory [20, 21], statistical mechanics [17] and
free probability [10].

Definition 2.1. A planar algebra is a family of vector spaces {Vi}i∈Z≥0
, such that pic-

tures like this
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?

?

?

(i.e., a picture with an outside disk, some number of inside disks, marked points near the
boundary of each disk, and non-crossing strings connecting the disks up) give a multilinear
map

• taking one input for each inner disk, coming from Vi (where i is the number of
strands of that disk);
• giving an output in Vu (where u is the number of strands of the outer disk).

For example, the above picture gives a map V2 ⊗ V5 → V3.

Such pictures (considered up to isotopy) are called planar tangles. They have
a natural composition, by putting one planar tangle into one of the inner disks of
another, if the strings match up. The action of planar tangles on planar algebras
must be compatible with this composition.

Although not all planar algebras come from subfactors, when they do, the pro-
cess can be reversed; A result of Popa [29] constructs subfactors from planar alge-
bras satisfying certain conditions. Thus many properties of subfactors are visible
in planar algeras.

The principal graph of a subfactor is an invariant intermediate between the index
and the planar algebra of a subfactor. It is a bipartite graph encoding the tensor
product decomposition rules for the generator of the planar algebra of the subfac-
tor. It recovers the index of the subfactor as the square of the Frobenius-Perron
eigenvalue of the principal graph (or equivalently the square of the operator norm
of its adjacency matrix). A subfactor with principal graph A∞ = • • • • . . . is
called trivial.

The question of which finite graphs can occur as principal graphs is very interest-
ing. If a subfactor has index less than or equal to 4, its principal graph is a Dynkin
or extended Dynkin diagram. Haagerup [11] showed in 1993 that there are only
two infinite families of graphs and one stand-alone graph which could be princi-
pal graphs of (non-trivial) subfactors with index in the range (4, 3 +

√
3). In 1999,

Haagerup and Asaeda [1] gave constructions of two subfactors whose principal
graphs are on this list. They are called the Haagerup and Asaeda-Haagerup subfac-

tors, and have principal graphs • • • • • • •• • • and • • • • • • • • •
•

• • • • •
and indices 5+

√
13

2 ≈ 4.30278 and 5+
√
17

2 ≈ 4.56155, respectively. The Haagerup
subfactor is the smallest example of an exotic subfactor

All but one of the graphs on Haagerup’s list [11] can be proven not to exist. Bisch
[5] demonstrated that one of the families of graphs would give non-associative
fusion rules. Asaeda and Yasuda [2, 3] used number-theoretic results of Etingof,
Nikshych and Ostrik [9] to show that the graphs in the Haagerup family beyond
the first two cannot be principal graphs of subfactors either.

The classification of subfactors with index less than 3 +
√
3 was completed in

2009, when we constructed the “extended Haagerup” planar algebra in [4]. The
extended Haagerup planar algebra has index ≈ 4.37720 and principal graph
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• • • • • • • • • • •• • • , and currently has the highest supertransitivity
(distance before a branch point) of any known subfactor.

3. POTENTIAL PRINCIPAL GRAPHS AND THE FUSIONATLAS

We begin with a hard but motivational question.

Question 3.1. Which bipartite graphs are principal graphs for subfactors?

No simple answer to this question is known, but progress has been made in
the case of small-index principal graphs. As described above, the classification of
subfactors up to index 3 +

√
3 was completed when the extended Haagerup sub-

factor was constructed. Recently, the classification has been extended to subfactors
with index less than 5. Both of these classifications are stated in terms of principal
graphs.

Theorem 3.2 (Han, Izumi, Jones, Morrison, Penneys, Snyder and Tener [12, 24, 25,
13, 27]). The only subfactors with index in [3 +

√
3, 5) are trivial subfactors, the unique

subfactor subfactor with the GHJ 331 principal graph and the unique subfactor with the
Izumi-Xu 2221 principal graph.

The uniqueness of the Izumi-Xu 2221 subfactor was established by Han in [12].
The rest of this theorem was proved in a series of four papers.

In the first paper, Morrison and Snyder [24] used the FusionAtlas computer pro-
grams to narrow down the principal graphs which could occur for a subfactor with
index between 3 +

√
3 and 5. FusionAtlas [22] is a Mathematica package I have

contributed to, designed to deal with principal graphs and planar algebras. One of
FusionAtlas’s main features is the enumeration of principal graphs.

Morrison and Snyder’s list of potential principal graphs with index less than
5 contained 54 ‘vines’ and five ‘weeds.’ Vines are graphs whose translates may
be principal graphs (that is, everything in the vine family looks alike except for the
initial segment, which may vary in length). Weeds are graphs whose translates and
extensions may be principal graphs (that is, weeds can have further vertices and
branches growing out of the right side of the graph too). A single weed therefore
represents an infinite number of different vines; unsuprisingly, less information
can be read off of a weed’s graph.

In the second paper [25], I showed (with Morrison, Penneys, and Snyder) that
three of the five weeds appearing in the list of [24] cannot be principal graphs of
subfactors. The techniques we used to rule these weeds out include the “quadratic
tangles test,” (which uses details of the generators-and-relations presentation of
the planar algebra associated a weed), and tests which rule out weeds based on the
non-existence of connections on their principal graphs.

The remaining two weeds are ruled out in [13], which also established unique-
ness of the GHJ 3311 subfactor. A uniform treatment which rules out all the graphs
coming from the 54 vines, other than those already know to exist, is given in [27].

The classification up to index 5 is further progress towards identifying the bound-
ary between ‘tame’ and ‘wild’ index values for subfactors.

Problem 3.3. We say an index is tame if subfactors at that index can be classified by their
principal graphs or planar algebras. An index is wild if such a classification is impossible.
Is there a boundary between ‘tame’ and ‘wild’ indices? If so, where is it?

The recently completed classification of subfactors up to index 5 shows that 5 is a
tame index. On the other hand, wild behavior is seen at index 6; Bisch, Nicoara and
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Popa show in [7] that there are infinitely many non-isomorphic index-6 subfactors
with the same planar algebra.

Conjecture 3.4. The first wild index for subfactors is 3 +
√
5 = 2 ·

(
1+

√
5

2

)2
≈ 5.23607.

One reason for hoping to see wild behavior at 3 +
√
5 is that this is the smallest

index greater than four of a Fuss-Catalan subfactor [6]. Because the Fuss-Catalan
planar algebras arise as a free product of Temperley-Lieb planar algebras, one can
hope that various quotient planar algebras might yield infinitely many (possibly
infinite-depth) planar algebras having this index.

We hope to make more progress on Problem 3.3 with further computer assistance
from the FusionAtlas [22] in performing an exhaustive search for principal graphs
below a certain index (ideally 3 +

√
5, although other values between 5 and 3 +

√
5

would also constitute progress).
Recently, Scott Morrison and I have implemented calculations of connections

in graph planar algebras in the FusionAtlas. This has increased the number of
tests available, which for instance makes it possible to classify one-supertransitive
subfactors with index in the range (5, 3 +

√
5). More importantly, this brings us a

step closer to the following:

Work In Progress 3.5 (Morrison and Peters). Prove theorems making it possible to write
a computer program which determines whether a finite graph P is the principal graph of a
subfactor, by attempting to construct the associated planar algebra.

This program will work by using a combined approach to construction (sug-
gested by Jones), which finds both a generator of the planar algebra and a biunitary
connection, and checks flatness of the generator (under the connection). This pro-
cedure is algorithmic, and involves solving a finite system of equations. However,
it is important to note that as graph complexity (measured by index or supertran-
sitivity) gets large, such a program quickly runs into time and memory constraints.
Nevertheless, we believe that this approach is promising; recently, we showed [23]

that there is a unique subfactor with principal graph • • • •• • by finding a gen-
erator and a unique connection under which the generator is flat.

We are in the process of proving that a version of this construction works with
bi-invertible, instead of biunitary, connections. Such a theorem will allow us to
perform these computations over a number field, instead of using exact arithmetic,
which makes many previously impossible calculations possible. This is what is
meant above by “Prove theorems making it possible to write a computer program
. . . .”

Previous methods of constructing subfactors have not been amenable to au-
tomating construction. If one tries to construct a planar algebra without the as-
sociated connection, one needs to know the generators-and-relations presentation
of the planar algebra (and there is not an algorithm for reading this from a general
principal graph). If one tries to construct a subfactor via connections only, one must
check the “flatness” of the connection for all vertices in the principal graph, and this
becomes computationally unfeasible much quicker than the combined construction
approach.

4. CONSTRUCTING SUBFACTORS WITH PLANAR ALGEBRAS

The FusionAtlas’ graph enumerator (described in §3) can help us search for new
exotic subfactors. Though we are not yet close to a complete classification up to
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index 3 +
√
5 (and such a classification is provably impossible past 6), a partial

enumeration of graphs up to that index limit can be a good place to start looking
for new examples of exotic subfactors.

Planar algebras are proving to be a powerful tool with which to construct subfac-
tors. Philosophically, the advantages of planar algebras are their ability to simul-
taneously encode different algebraic structures, and highlight symmetries. Practi-
cally speaking, Popa [29] showed how to construct, from a planar algebra (specifi-
cally, the equivalent structure called λ-lattices) with a given principal graph, a sub-
factor with that same principal graph. By a result of Jones-Penneys and Morrison-
Walker [19, 26], one can always find the planar algebra of a finite-depth subfactor
inside the graph planar algebra of its principal graph. In [16, 18], Jones developed
tools for locating this sub-planar algebra.

In [28], I used these tools to prove the existence of the Haagerup planar algebra.
These methods were extended in [4] to construct the planar algebra of the extended
Haagerup subfactor, answering affirmatively the question of its existence.

Theorem 4.1 (Bigelow-Morrison-Peters-Snyder, [4]). The extended Haagerup planar
algebra exists.

Theorem 4.2 (Bigelow-Morrison-Peters-Snyder, [4]). Any planar algebra with princi-
pal graph in the Haagerup/extended Haagerup family (ie, in the Haagerup vine) must have
a generator-and-relations presentation of a certain specified form.

The presentation of Theorem 4.2 involves one generator, some very simple rela-
tions on that generator, and three relations similar to

2n− 1

S
?

2n+ 2

f (2n+2) = i

√
[n][n+ 2]

[n+ 1]
·

n+ 1 n+ 1

n− 1
S

?

S

?

2n+ 2

f (2n+2) .

(This relation says one can “pull a generator S past a string” by allowing it to
double.)

Theorem 4.1 is proved by identifying a generator in the graph planar algebra and
calculating its second through fourth moments (this is a computer-aided calcula-
tion of moments of large matrices). In combination with some linear algebra and
skein theory involving Jones-Wenzl idempotents (f (2n+2) in the above pictures),
these moments prove that this generator satisfies the relations given in the presen-
tation of 4.2.

The presentation of Theorem 4.2 also raises hopes that one can do the following:

Problem 4.3. Find a direct, diagrammatic proof that further extended Haagerup subfactors
do not exist.

The further extended Haagerup subfactors are already known not to exist, but
the proof is somewhat roundabout and relies on number theory. Because the asso-
ciated planar algebras cannot exist either, there must be some diagram which can
be evaluated in two different ways, to give two different answers. This would be
a direct proof that the only planar algebra consistent with the relations dictated by
the further extended Haagerup principal graph is trivial.

Another direction for exploration raised by Theorem 4.1 is the question of super-
transitivity. Recall the supertranstitivity of a graph is the distance from the initial
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vertex to the first branch point. The extended Haagerup subfactor has supertran-
sitivity 7, higher than any previously known supertransitivity of a (non-trivial)
subfactor with index more than 4.

Recall from §3 that, unlike the classification up to 3+
√
3, the classification up to 5

did not produce new examples of exotic subfactors. One might suspect that as one
gets further from the classical region of index below 4, exotic subfactors would be
easier to come by, but the evidence below index 5 seems to contradict this. It would
be very interesting to know whether there is some sort of rigidity result obstructing
exotic subfactors at higher indices. More specifically, one could ask

Question 4.4. Do there exist (non-trivial) subfactors with index more than 4 of all super-
transitivities?

Many people believe that there should be a bound on supertransitivity. There
is not much evidence for this, other than our inability to find subfactors of high
supertransitivities. However, there is one result which does seem to point towards
a bound on supertransitivity. Calegari, Morrison and Snyder [8] have shown that
any vine (recall that a vine represents a family of graphs which vary only in their
supertransitivity) can contain only finitely many prinicipal graphs of subfactors.

With help from FusionAtlas, I hope to produce further graphs to test this hy-
pothesis on. Though the FusionAtlas graph enumerator can’t produce a complete
list of candidates when the upper limit on the index is more than 6, one can gen-
erate incomplete lists of candidate graphs, and look through them for graphs that
“seem likely” to exist. Further testing, including attempts to construct the associ-
ated subfactors (either by hand or by computer), could generate further evidence
for or against the existence of a bound on supertransitivity. The “4442” graph

• • • • • • • • •• • • •• •
is an example of a graph which has been found in this

way, which is a good candidate to attempt to construct.
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