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“The little desert? Some subfactors with index in the interval
(5, 3 +

√
5)”, with Scott Morrison.
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Suppose N ⊂ M is a subfactor, ie a unital inclusion of type II1
factors.

Definition

The index of N ⊂ M is [M : N] := dimN L2(M).

Example

If R is the hyperfinite II1 factor, and G is a finite group which acts
outerly on R, then R ⊂ R o G is a subfactor of index |G |.

If H ≤ G , then R o H ⊂ R o G is a subfactor of index [G : H].

Theorem (Jones)

The possible indices for a subfactor are

{4 cos(
π

n
)2|n ≥ 3} ∪ [4,∞].
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Let X =NMM and X =M(Mop)N , and ⊗ = ⊗N or ⊗M as needed.

Definition

The standard invariant of N ⊂ M is the (planar) algebra of
bimodules generated by X :

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

Definition

The principal graph of N ⊂ M has vertices for (isomorphism
classes of) irreducible N-N and N-M bimodules, and an edge from

NYN to NZM if Z ⊂ Y ⊗ X (iff Y ⊂ Z ⊗ X ).

Ditto for the dual principal graph, with M-M and M-N bimodules.
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Example: R o H ⊂ R o G

Again, let G be a finite group with subgroup H, and act outerly on
R. Consider N = R o H ⊂ R o G = M.
The irreducible M-M bimodules are of the form R ⊗ V where V is
an irreducible G representation. The irreducible M-N bimodules
are of the form R ⊗W where W is an H irrep.
The dual principal graph of N ⊂ M is the induction-restriction
graph for irreps of H and G .

Example (S3 ≤ S4)

trivial standard V sign⊗standard sign

trivial standard sign

(The principal graph is an induction-restriction graph too, for H
and various subgroups of H.)
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Where do subfactors come from?

Groups

Quantum Groups

Rational Conformal Field Theories

Out of thin air (from connections or planar algebras).
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Reconstruction Theorems

The standard invariant of a subfactor can be described by

A planar algebra (Jones)

A biunitary connection (Ocneanu)

Certain planar algebras or connections give subfactors:

subfactor planar algebras, which have an inner product defined
by 〈x , y〉 := tr(y∗x)

flat connections

Both the planar algebra and the biunitary connection of a
subfactor are finite if the principal graph is finite.

Theorem (Jones-Penneys, Morrison-Walker)

If P is a subfactor planar algebra with principal graph Γ, a copy of
P can be found in GPA(Γ).
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Index less than 4

Theorem (Jones, Ocneanu, Kawahigashi, Izumi, Bion-Nadal)

The principal graph of a subfactor of index less than 4 is one of

An = ∗ · · ·
n vertices

, n ≥ 2 index 4 cos2( π
n+1)

D2n = ∗ · · ·

2n vertices

, n ≥ 2 index 4 cos2( π
4n−2)

E6 = ∗ index 4 cos2( π12) ≈ 3.73

E8 = ∗ index 4 cos2( π30) ≈ 3.96
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Index 4

Theorem (Popa and others)

The principal graphs of a subfactor of index 4 are extended Dynkin
diagram:

A
(1)
n = ∗ · · ·

· · ·
n + 1 vertices

, n ≥ 1, D
(1)
n = ∗ · · ·

n + 1 vertices

, n ≥ 3,

E
(1)
6 = ∗ , E

(1)
7 = ∗ ,

E
(1)
8 = ∗ , A∞ = ∗ · · · ,

A
(1)
∞ = ∗ · · ·

· · ·
, D∞ = ∗ · · ·

There are multiple subfactors for some of these principal graphs

(eg, n − 1 non-isomorphic hyperfinite subfactors for D
(1)
n ).
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Haagerup’s list

In 1993 Haagerup classified possible principal graphs for
subfactors with index between 4 and 3 +

√
3 ≈ 4.73:

, , , . . .,

(≈ 4.30, 4.37, 4.38, . . .)

, (≈ 4.56)

, , . . . (≈ 4.62, 4.66, . . .).

Haagerup and Asaeda & Haagerup (1999) constructed two of
these possibilities.

Bisch (1998) and Asaeda & Yasuda (2007) ruled out infinite
families.

In 2009 we (Bigelow-Morrison-Peters-Snyder) constructed the
last missing case. arXiv:0909.4099
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Extending Haagerup’s classification to index 5

Why did Haagerup stop at 3 +
√

3?

Why try to extend it?

The classification is again in terms of principal graphs.

Definition

The vertices of a principal graph pair are (isomorphism classes of)
irreducible bimodules over A and/or B. Let X =A BB .

In the standard invariant, there are four kinds of bimodules: A−A,
A− B, B − A and B − B. The principal graph has A− A and
A− B bimodules, and AYA and AZB are connected by an edge if
Z ⊂ Y ⊗ X .

The dual principal graph has B − A and B − B projections, and

BVA and BWB are connected by an edge if W ⊂ V ⊗ X .
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Example (The Haagerup subfactor’s principal graph pair)(
,

)
Which pairs can go together? The vertices of a principal graph are
(isomorphism classes of) projections in End(X⊗n)

The graphs must have the same graph norm;

The graphs’ depths can differ by at most 1;

The pair must satisfy an associativity test:

(X ⊗ Y )⊗ X ∼= X ⊗ (Y ⊗ X )

A computer can efficiently enumerate such pairs with index below
some number L up to a given rank or depth, obtaining a collection
of allowed vines and weeds.
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Definition

A vine represents an integer family of principal graphs, obtained by
translating the vine.

Example

=⇒

Definition

A weed represents an infinite family, obtained by either translating
or extending arbitrarily on the right.

Example

=⇒
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Each time we extend the depth, a weed turns into a set of vines
and a (possibly empty) set of new, longer weeds. If all the weeds
disappear, the enumeration is complete. This happens if the index
is sufficiently small (e.g. Haagerup’s theorem up to index 3 +

√
3),

but generally we stop with some surviving weeds, and have to rule
these out ‘by hand‘.

For example, here’s what we get when we run this procedure with
index limit 5, starting from the bigraph pair(

,
)

:
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The classification up to index 5

Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

Every (finite depth) II1 subfactor with index less than 5 sits inside
one of 54 families of vines, or 5 families of weeds:

C =
(

,
)
,

F =
(

,
)
,

B =
(

,
)
,

Q =
(

,
)
,

Q′ =
(

,
)
.
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Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

Every (finite depth) II1 subfactor with index less than 5 sits inside
one of 54 families of vines, or 5 families of weeds.

This is proved by exhaustive computer calculations, and

Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

There are no subfactors with index in (4, 5) with supertransitivity
one.

This is proved by careful attention to dimensions (and the difficulty
of having an intermediate subfactor at small index).

Definition

The supertransitivity of a graph of an irreducible subfactor is the
number of edges between its initial point and the first branch point.
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Theorem

There are exactly ten non-trivial subfactors with index between 4
and 5:(

,
)

,(
,

)
,(

,
)

,

The 3311 GHJ subfactor (MR999799), with index 3 +
√

3(
,

)
,

Izumi’s self-dual 2221 subfactor (MR1832764), with index
5+
√
21

2

(
,

)
along with the non-isomorphic duals of the first four, and the
non-isomorphic complex conjugate of the last.
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How do you kill vines?

non-associativity (The computer doesn’t check that
X ⊗ (Y ⊗ X ) ' (X ⊗ Y )⊗ X , only that
#X ⊗ (Y ⊗ X ) = #(X ⊗ Y )⊗ X ).

number theory:

Theorem (Coste-Gannon, ’94)

The dimension of an object in a fusion category is a cyclotomic
integer.

Theorem (Calegari-Morrison-Snyder, ’10)

Only a finite number of graphs in any vine have cyclotomic index.
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How do you killl weeds?

No longer have enough information to use non-associativity or
number theory.

Show there’s no biunitary connection

Show there’s no planar algebra
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Theorem

There are exactly ten non-trivial subfactors with index between 4
and 5.

Proven in “Subfactors of index less than 5:”

Morrison-Snyder, part 1: the principal graph odometer,
arXiv:1007.1730

Morrison-Penneys-Peters-Snyder, part 2: triple points,
arXiv:1007.2240

Izumi-Jones-Morrison-Snyder, part 3: quadruple points,
arXiv:1109.3190

Penneys-Tener, part 4: vines, arXiv:1010.3797
and

Han, A construction of the “2221” planar algebra,
arXiv:1102.2052
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Theorem (Izumi)

The only subfactors with index exactly 5 are group-subgroup
subfactors:

1 ⊂ Z5;

Z2 ⊂ D10;

F×5 ⊂ F5 o F×5 ;

A4 ⊂ A5;

S4 ⊂ S5.

Emily Peters Classifying subfactors: beyond index 5



Theorem

There are two known subfactors coming from quantum groups
(SU(2) and SU(3)) with index between 5 and 3 +

√
5. They both

have index ≈ 5.05, and their principal graphs are

A =
(
∗ , ∗

)
and

B =

(
∗ , ∗

)

Theorem (Morrison-Peters)

There are unique subfactors with principal graphs A and B.
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Theorem (Morrison-Peters)

The only 1-supertransitive subfactor with index between 5 and
3 +
√

5 has principal graph A.

Proof.

Careful attention to the dimensions appearing in potential principal
graphs gives this result.

Suppose first our graph is finite-depth. There are at least two
vertices at depth two. Neither can have dimension one, or there
would be an intermediate subfactor. They cannot both have
dimension bigger than two, because the allowed dimensions bigger
than two would make the index too big. Thus at least one has
dimension between 1 and 2.

Considered from the point of view of this vertex, then, we are
looking at a subfactor of index less than four. We understand
these ...
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Conjecture

There are only two subfactors with index between 5 and 3 +
√

5,
namely the quantum group subfactors with principal graphs

A =
(
∗ , ∗

)
and

B =

(
∗ , ∗

)

With help from a computer, we can show

Theorem (Trilobata)

There are only two subfactors with index between 5 and 3 +
√

5
and rank ≤ 38, namely the quantum group subfactors with
principal graphs A and B.
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The terrain changes:

Theorem (Bisch-Nicoara-Popa)

At index 6, there is an infinite one-parameter family of subfactors
having isomorphic standard invariants.

and

Theorem (Bisch-Jones)

A2 ∗ A3 is an infinite depth subfactor at index
2τ2 = 3 +

√
5 ∼ 5.23607.

∗ · · · ,

∗ · · ·
· · ·
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Planar algebras

Definition

A shaded planar diagram has

a finite number of inner boundary circles

an outer boundary circle

non-intersecting strings

a marked point ? on each boundary circle

?

?

? ?
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We can compose planar diagrams, by insertion of one into another
(if the number of strings matches up):

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?

Definition

The shaded planar operad consists of all planar diagrams (up to
isomorphism) with the operation of composition.
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Definition

A planar algebra is a family of vector spaces Vk,±, k = 0, 1, 2, . . .
which are acted on by the shaded planar operad.

V2,− × V1,+ × V1,+ V3,+

V2,− × V2,+ × V1,+

?

?

? ?

2

1

?

?

3

? ?
?

?
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Example (The graph planar algebra G(Γ))

The underlying vector spaces G(Γ)n,± are (formal sums of) loops
of length n on Γ, with the base point at either an even or odd
depth vertex depending on ±.

To define the action of a planar tangle T , we specify its values
T (γi ), where the γi are loops corresponding to the input vector
spaces for T . This element T (γi ) ∈ Gn is a sum of loops
corresponding to the outside boundary of T :

T (γi ) =
∑
b∈L

c(T , b)∂outer(b), (0.1)

where the label set L consists of all ways to compatibly color the
strands of T with edges of Γ and the regions of T with vertices of
Γ, such that around each inner or outer boundary of T the colors
agree with the loops γi . ∂outer(b) is the loop given by reading this
labelling around the outer boundary. The coefficients c(T , b) are ...
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We care about graph planar algebras because

Theorem (Jones-Penneys, Morrison-Walker)

If P is a subfactor planar algebra with principal graph Γ, a copy of
P can be found in GPA(Γ).

Together with

Theorem (Popa)

For finite-depth subfactors, the standard invariant is a complete
invariant.

We can prove

Theorem (Morrison-Peters)

There are unique subfactors with principal graphs A and B.
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Proof.

First we find biunitary connections for these graphs. There are (up
to gauge equivalence) two for A and one for B. So uniqueness of
B is established.

For any connection on a graph, the flat elements of the graph
planar algebra form a subfactor planar algebra. However, it might
not have the original graph as its principal graph.

The flat planar subalgebra for one of the connections on A is too
small to have principal graph A. The other connection then must
(and does!) have the associated flat planar subalgebra have
principal graph A.

As there is a unique (up to gauge equivalence) subfactor planar
algebra of GPA(A), there is a unique subfactor with principal graph
A.
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The End!
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