NOTES FROM THE OPERATOR ALGEBRAS AND CFT WORKSHOP

SCOTT CARNAHAN

Abstract. Notes August 16-21 2010. Other people's notes appear at:
http://math.mit.edu/~eep/CFTworkshop

1. Monday, $8 / 16 / 10$
1.1. 11:30am Min Ro, Hilbert spaces, polar decomposition, spectral theorem, von Neumann algebras. Let H be a Hilbert space. $S \subset B(H)$ a set of bounded linear operators.

The commutant of S is $S^{\prime}=\{a \in B(H) \mid a b=b a \forall b \in S\}$.
The adjoint of an operator a is the unique operator a^{*} that satisfies $(a \xi, \eta)=\left(\xi, a^{*} \eta\right)$ for all $x i, \eta \in H . a$ is self-adjoint if $a^{*}=a . a$ is normal if $a^{*} a=a a^{*} . a$ is unitary if $a a^{*}=a^{*} a=1 . a$ is a projection if $a^{*}=a=a^{2}$.

There is a rough dictionary, where self-adjoint operators correspond to real-valued functions, and projections correspond to characteristic functions.

Convergence: $a_{\lambda} \rightarrow a$ in strong operator topology if and only if we have pointwise convergence in norm: $\lim _{\lambda}\left\|a_{\lambda} \xi\right\|=\|a \xi\| . a_{\lambda} \rightarrow a$ in the weak operator topology if we have pointwise convergence in inner products: $\lim _{\lambda} \mid\left(a_{\lambda} \xi\right.$, eta $)|=|(a \xi, \eta)|$ and $|(a \xi, \eta)|\leq\|a \xi \mid \cdot\| \eta \|$.

Theorem (DCT) If M is a unital $*$-subalgebra of $B(H)$, then TFAE
(1) $M^{\prime \prime}=M$
(2) M is weak operator closed.
(3) M is strong operator closed.

Definition A von Neumann algebra $M \subset B(H)$ is a unital *-subalgebra that satisfies $M^{\prime \prime}=M$.
The center of M is $Z(M)=M \cap M^{\prime}$.
M is a factor if $Z(M)=\mathbb{C} \cdot 1$.
Examples: $B(H)$ is a factor, and if H is finite dimensional, this is just $M_{n}(\mathbb{C})$. We can also take direct limits of matrix algebras, e.g., for F_{n} the Fibonacci sequence, take a limit of inclusions $\left(M_{F_{n-1}} \oplus M_{F_{n}} \rightarrow M_{F_{n}} \oplus M_{F_{n+1}}\right.$ by $(a, b) \mapsto\left(b,\binom{a 0}{0 b}\right)$.

If $S \subset B(H)$ is a self-adjoint subset, then S^{\prime} is a von Neumann algebra, and $S^{\prime \prime}$ is the smallest von Neumann algebra containing S. In particular, for any $a \in B(H)$, we can construct $W^{*}(a)=$ $\left\{a, a^{*}\right\}^{\prime \prime}$.

Let X be a σ-finite measure space $\left(X=\bigcup_{i=1}^{\infty} E_{i}\right)$, then $L^{\infty}(X)$ includes into $B\left(L^{2}(X)\right)$, and this is a von Neumann algebra. Conversely, for any commutative von Neumann algebra A, there is a measure space X such that $A \cong L^{\infty}(X)$.

Let X be compact, $T^{2} . B_{b}(X)$ is the space of complex Borel bounded functions. $S p(a)=\{\lambda \in$ $\mathbb{C} \mid \lambda \cdot 1-a$ not invertible $\}$. This is a nonempty compact set.

Theorem: (Borel functional calculus) Let $a \in B(H)$ be normal. There is a $*$-homomorphism $B_{b}(s p(a)) \rightarrow W^{*}(a)$ taking $f \mapsto f(a)$. If $\left(f_{n}\right) \subset B_{b}(s p(a))_{s a}$, and $f_{n} \rightarrow f$, then $\lim f_{n}(a)=f(a)$.

Definition: Let X be compact Hausdorff. A spectral measure relative to (X, H) is a map E from the Borel sets of X to the projections of H such that
(1) $E(\emptyset)=0, E(X)=1$
(2) $E\left(\bigcup_{n=1}^{\infty} S_{i}\right)$ converges to $\sum_{i=1}^{\infty} E\left(S_{i}\right)$ in the strong operator topology, if S_{i} are pairwise disjoint.
(3) $E\left(S_{1} \cap S_{2}\right)=E\left(S_{1}\right) E\left(S_{2}\right)$.

Definition: $\int_{X} f(\lambda) d(E, \lambda)$ can be defined.
Theorem: (Spectral theorem) Let $a \in B(H)$ be normal. There exists a unique spectral measure relative to $(s p(a), H)$ such that $a=\int_{s p(a)} \lambda d(E, \lambda)$.

Theorem: (Polar decomposition) Let $a \in B(H)$ with $a^{*} a$ positive (i.e., its spectrum is contained in the nonnegative reals). Then there is a square root $\left(a^{*} a\right)^{1 / 2}$. There is a unique $u \in B(H)$ such that u is a partial isometry (i.e., $u^{*} u$ and $u u^{*}$ are projections), $a=u\left(a^{*} a\right)^{1 / 2}$, and $\operatorname{ker}(u)=$ $\operatorname{ker}\left(a^{*} a\right)^{1 / 2}$.

If a is densely defined and closed (i.e., the graph is closed in $H \times H$), then this also works. (NB: there is also a notion of closable operator, whose graph is not closed, but has the property that the closure of the graph is the graph of something else.)

Definition: Let $S \subset B(H)$ be a self-adjoint subset. We consider two types of representation of S. (K is some other Hilbert space.)
(1) $\pi: S \rightarrow U(K)$ a group.
(2) $\pi: S \rightarrow B(K)$ a $*$-homomorphism.

We can associate a von Neumann algebra by S^{\prime} or $S^{\prime \prime}$. We call either a factor representation if S^{\prime} is a factor. This is an analogue of a piece of an isotypical decomposition - canonical, not necessarily irreducible.

If $M=S^{\prime}$, then the projections in M correspond one-to-one to subrepresentations of (π, K).
Proposition: If (π, H) is a factor representation of S, and $\left.\pi_{1}, K_{1}\right),\left(\pi_{2}, K_{2}\right)$ are two subrepresentations, then
(1) there is a unique $*$-isomorphism $\Theta: \pi_{1}(S)^{\prime \prime} \rightarrow \pi_{2}(S)^{\prime \prime}$ such that $\Theta\left(\pi_{1}(x)\right)=\pi_{2}(x)$ for all $x \in S$.
(2) For $X=\operatorname{Hom}_{S}\left(K_{1}, K_{2}\right)$, then $\overline{X K_{1}}=K_{2}$.
(3) $\Theta(a) T=T a$ for all $a \in \pi_{1}(S)^{\prime \prime}, T \in X$.
(4) If $X_{0} \subset X$ such that $\overline{X_{0} K_{1}}=K_{2}$, then $\Theta(a)$ is the unique $b \in \pi_{2}(S)^{\prime \prime}$ such that $b T=T a$ for all $T \in X_{0}$.

