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1. Monday, 8/16/10

1.1. 11:30am Min Ro, Hilbert spaces, polar decomposition, spectral theorem, von Neu-

mann algebras. Let H be a Hilbert space. S ⊂ B(H) a set of bounded linear operators.
The commutant of S is S′ = {a ∈ B(H) | ab = ba∀b ∈ S}.
The adjoint of an operator a is the unique operator a∗ that satisfies (aξ, η) = (ξ, a∗η) for all

xi, η ∈ H. a is self-adjoint if a∗ = a. a is normal if a∗a = aa∗. a is unitary if aa∗ = a∗a = 1. a is a
projection if a∗ = a = a2.

There is a rough dictionary, where self-adjoint operators correspond to real-valued functions, and
projections correspond to characteristic functions.

Convergence: aλ → a in strong operator topology if and only if we have pointwise convergence in
norm: limλ ‖aλξ‖ = ‖aξ‖. aλ → a in the weak operator topology if we have pointwise convergence
in inner products: limλ |(aλξ, eta)| = |(aξ, η)| and |(aξ, η)| ≤ ‖aξ| · ‖η‖.

Theorem (DCT) If M is a unital ∗-subalgebra of B(H), then TFAE

(1) M ′′ = M

(2) M is weak operator closed.
(3) M is strong operator closed.

Definition A von Neumann algebra M ⊂ B(H) is a unital ∗-subalgebra that satisfies M ′′ = M .
The center of M is Z(M) = M ∩M ′.
M is a factor if Z(M) = C · 1.
Examples: B(H) is a factor, and if H is finite dimensional, this is just Mn(C). We can also

take direct limits of matrix algebras, e.g., for Fn the Fibonacci sequence, take a limit of inclusions
(MFn−1

⊕MFn
→ MFn

⊕MFn+1
by (a, b) 7→ (b,

(

a0
0b

)

).
If S ⊂ B(H) is a self-adjoint subset, then S′ is a von Neumann algebra, and S′′ is the smallest

von Neumann algebra containing S. In particular, for any a ∈ B(H), we can construct W ∗(a) =
{a, a∗}′′.

Let X be a σ-finite measure space (X =
⋃

∞

i=1Ei), then L∞(X) includes into B(L2(X)), and
this is a von Neumann algebra. Conversely, for any commutative von Neumann algebra A, there is
a measure space X such that A ∼= L∞(X).

Let X be compact, T 2. Bb(X) is the space of complex Borel bounded functions. Sp(a) = {λ ∈
C | λ · 1− a not invertible}. This is a nonempty compact set.

Theorem: (Borel functional calculus) Let a ∈ B(H) be normal. There is a ∗-homomorphism
Bb(sp(a)) → W ∗(a) taking f 7→ f(a). If (fn) ⊂ Bb(sp(a))sa, and fn → f , then lim fn(a) = f(a).

Definition: Let X be compact Hausdorff. A spectral measure relative to (X,H) is a map E

from the Borel sets of X to the projections of H such that

(1) E(∅) = 0, E(X) = 1
(2) E(

⋃

∞

n=1 Si) converges to
∑

∞

i=1 E(Si) in the strong operator topology, if Si are pairwise
disjoint.
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(3) E(S1 ∩ S2) = E(S1)E(S2).

Definition:
∫

X f(λ)d(E,λ) can be defined.
Theorem: (Spectral theorem) Let a ∈ B(H) be normal. There exists a unique spectral measure

relative to (sp(a),H) such that a =
∫

sp(a) λd(E,λ).

Theorem: (Polar decomposition) Let a ∈ B(H) with a∗a positive (i.e., its spectrum is contained

in the nonnegative reals). Then there is a square root (a∗a)1/2. There is a unique u ∈ B(H) such

that u is a partial isometry (i.e., u∗u and uu∗ are projections), a = u(a∗a)1/2, and ker(u) =

ker(a∗a)1/2.
If a is densely defined and closed (i.e., the graph is closed in H ×H), then this also works. (NB:

there is also a notion of closable operator, whose graph is not closed, but has the property that the
closure of the graph is the graph of something else.)

Definition: Let S ⊂ B(H) be a self-adjoint subset. We consider two types of representation of
S. (K is some other Hilbert space.)

(1) π : S → U(K) a group.
(2) π : S → B(K) a ∗-homomorphism.

We can associate a von Neumann algebra by S′ or S′′. We call either a factor representation if S′ is
a factor. This is an analogue of a piece of an isotypical decomposition - canonical, not necessarily
irreducible.

If M = S′, then the projections in M correspond one-to-one to subrepresentations of (π,K).
Proposition: If (π,H) is a factor representation of S, and π1,K1), (π2,K2) are two subrepre-

sentations, then

(1) there is a unique ∗-isomorphism Θ : π1(S)
′′ → π2(S)

′′ such that Θ(π1(x)) = π2(x) for all
x ∈ S.

(2) For X = HomS(K1,K2), then XK1 = K2.
(3) Θ(a)T = Ta for all a ∈ π1(S)

′′, T ∈ X.
(4) If X0 ⊂ X such that X0K1 = K2, then Θ(a) is the unique b ∈ π2(S)

′′ such that bT = Ta

for all T ∈ X0.


