SUGAWARA'S FORMULA AND THE ACTION OF $Diff(S^1)$ ON POSITIVE ENERGY REPRESENTATION

SPEAKER: NICK ROZENBLYUM (MIT) TYPIST: MIKE HARTGLASS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

G simply connected Lie Group, and LG cecntral extension, and we're looking at positive energy representations of this. These representations are nice, and in particular one feature is that there is a projective action of $\text{Diff}(S^1)$ on positive energy reps.

We will be looking at the Lie algebra $\text{Lie}(\text{Diff}(S^1))$ of vector fields on S^1 . We can take a Fourier expansion of such things, i.e.

$$\sum_{n} a_n e^{in\theta} \frac{d}{d\theta}.$$

We'll restrict to polynomials. Let $L_n = -ie^{in\theta} \frac{d}{d\theta} = t^{n+1} \frac{d}{dt}$. These have commutation relations

$$[L_n, L_m] = (m-n)L_{n+m}.$$

Algebraic Geometry version: formal power series on the disk, $\mathcal{O} := \operatorname{Spec} \mathbb{C}(t)$.

circle $\rightsquigarrow \mathcal{K}$ formal functor disk

Consider vector fields on these $\operatorname{Der} \mathcal{K} = \mathbb{C}(t) \frac{d}{dt}$.

To understand the projective action of $\text{Diff}(S^1)$, we have to understand the central extensions of $\text{Diff}(S^1)$. There exists a universal central extension of $\text{Lie}(\text{Diff}(S^1))$, called the **Virasoro algebra**.

$$0 \to \mathbb{C}k \to \operatorname{Vir} \to \operatorname{Der} \mathcal{K} \to 0$$

Date: August 20, 2010.

Available online at http://math.mit.edu/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

It is generated by the L_n (for $n \in \mathbb{Z}$), and a cecntral element k. The bracket now looks like

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m, -n}k.$$

A module M over Vir has central charge $c \in \mathbb{C}$ if k acts by c.

let g be a simple finite dimensionl Lie algebra. We have a cetral extension

$$0 \to \mathbb{C}I \to \widehat{g} \to g \to 0$$

and an acton of $\operatorname{Diff}(S^1)$ hich gives an action of V_{in} on \widehat{g}

$$[L_m, X[n]] \equiv -nX[m+n]$$

for $X \in g X[n] = X \otimes t^n$.

PERs: $\widehat{LG} \rtimes \mathbb{T}_{rot} V = \bigoplus_n V(n) \frac{d}{d\theta} \in \operatorname{Lie}(\mathbb{T}_{rot})$

$$\left[\frac{a}{d\theta}, X[m]\right] = -mX[m]$$

which implies $v \in V(n)$ implies

$$X[m]v \in V(n-m)$$

Casimir: Fix an inner product on $g\langle , \rangle$. If θ is the lowest root then $\langle \theta, \theta \rangle = 2$ and if X_j is an orthonormal basis of g then

$$\Omega = \sum_{j} X_{j}^{2}$$

fix Ω in the center of U(g) the universal enveloping algebra.

In the adjoint rep, $\Omega = 2h' \cdot I$ where h' is the dual coxeter number. In the case G = SU(N) then h' = N. In general, if V is a highest weight representation of weight λ then

$$\Omega = \langle \lambda, \lambda + 2\rho \rangle \cdot I$$

where $\rho = \frac{1}{2}$ (sum of positive roots).

Consider $\sum_{j,n\in\mathbb{Z}} X_j[n]X_j[-n]$ a natural question is if this is central and what the sum even means. Thinking like a physicist, we proceed and play with the power series to get

$$\sum_{j,n>0} (X_j[n]X_j[-n] + X_j[-n]X_j[n]) + \sum_i X_i^2$$

SUGAWARA'S FORMULA AND THE ACTION OF $\operatorname{Diff}(S^1)$ ON POSITIVE ENERGY REPRESENTATION3

$$= \sum_{j,n>0} 2(X_j[n]X_j[-n]) + [X_j[-n], X_j[n]] + \sum_j X_j^2$$
$$= \sum_{j,n\in\mathbb{Z}} X_j[n]X_j[-n] = \sum_{j,n>0} [X_j[-n], X_j[n]$$

 $\sum_{j,n>0}[,]=\sum_{n>0}l\cdot n\cdot dim(g)=(:X[m]Y[n]:)$ is by definition X[m]Y[n] if $n\geq m$ and y[n]X[m] otherwise.

Consider $\Delta_0 = \sum_{j,n \in \mathbb{Z}} : X_j[-n]X_j[n] :$. If V is a PER of LG then Δ_0 acts on V. Δ_0 is not in the center.

$$[Y[m], \sum_{j} : X_{j}[-n]X_{j}[n] :] = Z_{n+m} - Z_{n}$$

for $m \neq \pm n$ and is equal to $Z_{n+m} - Z_n + mY[m]I$ if $m = \pm n$ where $Z_n = \sum_{j,k} \alpha_{jk} X_k[n] X_j[m-n]$: and $[Y, X_j] = \sum_k \alpha_{jk} X_k$ (in g).

Add all of these up. We get

$$\begin{split} [Y[m], \Delta_0] &= m(2YI + \Omega Y)[m] = 2M(l+h')Y[m] \\ &= 2(l+h')\frac{d}{d\theta}(Y[m]). \end{split}$$

We can learn two thigs:

- 1.) We can get a central element $\Delta = \Delta_0 + 2(l+h')\frac{d}{d\theta}$
- 2.) $L_n = \frac{d}{d\theta} = -\frac{1}{2(l+h')}\Delta_0$

We can define the higher Δ_m by

$$\Delta_m = \sum_{j,n \in \mathbb{Z}} : X_j[m-n]X_j[n] :$$

Then $L_m = -\frac{1}{2(l+h')}\Delta_m$

Theorem: These satisfy the Virasaro relations with central charge

$$K = \frac{l \cdot \dim(g)}{l + h'}$$