SUGAWARA'S FORMULA AND THE ACTION OF Diff $\left(S^{1}\right)$ ON POSITIVE ENERGY REPRESENTATION

SPEAKER: NICK ROZENBLYUM (MIT)

TYPIST: MIKE HARTGLASS

Abstract. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

G simply connected Lie Group, and $\tilde{L} G$ cecntral extension, and we're looking at positive energy representations of this. These representations are nice, and in particular one feature is that there is a projective action of $\operatorname{Diff}\left(S^{1}\right)$ on positive energy reps.

We will be looking at the Lie algebra $\operatorname{Lie}\left(\operatorname{Diff}\left(S^{1}\right)\right)$ of vector fields on S^{1}. We can take a Fourier expansion of such things, i.e.

$$
\sum_{n} a_{n} e^{i n \theta} \frac{d}{d \theta} .
$$

We'll restrict to polynomials. Let $L_{n}=-i e^{i n \theta} \frac{d}{d \theta}=t^{n+1} \frac{d}{d t}$. These have commutation relations

$$
\left[L_{n}, L_{m}\right]=(m-n) L_{n+m} .
$$

Algebraic Geometry version: formal power series on the disk, $\mathcal{O}:=\operatorname{Spec} \mathbb{C}(t)$.
circle $\rightsquigarrow \mathcal{K}$ formal functor disk
Consider vector fields on these $\operatorname{Der} \mathcal{K}=\mathbb{C}(t) \frac{d}{d t}$.
To understand the projective action of $\operatorname{Diff}\left(S^{1}\right)$, we have to understand the central extensions of $\operatorname{Diff}\left(S^{1}\right)$. There exists a universal central extension of $\operatorname{Lie}\left(\operatorname{Diff}\left(S^{1}\right)\right)$, called the Virasoro algebra.

$$
0 \rightarrow \mathbb{C} k \rightarrow \text { Vir } \rightarrow \text { Der } \mathcal{K} \rightarrow 0
$$

[^0]Available online at http://math.mit.edu/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

It is generated by the L_{n} (for $n \in \mathbb{Z}$), and a cecntral element k. The bracket now looks like

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{m^{3}-m}{12} \delta_{m,-n} k .
$$

A module M over Vir has central charge $c \in \mathbb{C}$ if k acts by c.
let g be a simple finite dimensionl Lie algebra. We have a cetral extension

$$
0 \rightarrow \mathbb{C} I \rightarrow \widehat{g} \rightarrow g \rightarrow 0
$$

and an acton of $\operatorname{Diff}\left(S^{1}\right)$ hich gives an action of $V_{i n}$ on \widehat{g}

$$
\left[L_{m}, X[n]\right] \equiv-n X[m+n]
$$

for $X \in g X[n]=X \otimes t^{n}$.

PERs: $\widehat{L G} \rtimes \mathbb{T}_{\text {rot }} V=\oplus_{n} V(n) \frac{d}{d \theta} \in \operatorname{Lie}\left(\mathbb{T}_{\text {rot }}\right)$

$$
\left[\frac{d}{d \theta}, X[m]\right]=-m X[m]
$$

which implies $v \in V(n)$ implies

$$
X[m] v \in V(n-m)
$$

Casimir: Fix an inner product on $g\langle$,$\rangle . If \theta$ is the lowest root then $\langle\theta, \theta\rangle=2$ and if X_{j} is an orthonormal basis of g then

$$
\Omega=\sum_{j} X_{j}^{2}
$$

fix Ω in the center of $U(g)$ the universal enveloping algebra.

In the adjoint rep, $\Omega=2 h^{\prime} \cdot I$ where h^{\prime} is the dual coxeter number. In the case $G=S U(N)$ then $h^{\prime}=N$. In general, if V is a highest weight representation of weight λ then

$$
\Omega=\langle\lambda, \lambda+2 \rho\rangle \cdot I
$$

where $\rho=\frac{1}{2}$ (sum of positive roots).

Consider $\sum_{j, n \in \mathbb{Z}} X_{j}[n] X_{j}[-n]$ a natural question is if this is central and what the sum even means. Thinking like a physicist, we proceed and play with the power series to get

$$
\sum_{j, n>0}\left(X_{j}[n] X_{j}[-n]+X_{j}[-n] X_{j}[n]\right)+\sum_{i} X_{i}^{2}
$$

SUGAWARA'S FORMULA AND THE ACTION OF Diff $\left(S^{1}\right)$ ON POSITIVE ENERGY REPRESENTATION3

$$
\begin{gathered}
=\sum_{j, n>0} 2\left(X_{j}[n] X_{j}[-n]\right)+\left[X_{j}[-n], X_{j}[n]\right]+\sum_{j} X_{j}^{2} \\
\quad=\sum_{j, n \in \mathbb{Z}} X_{j}[n] X_{j}[-n]=\sum_{j, n>0}\left[X_{j}[-n], X_{j}[n]\right.
\end{gathered}
$$

$\sum_{j, n>0}[]=,\sum_{n>0} l \cdot n \cdot \operatorname{dim}(g)=(: X[m] Y[n]:)$ is by definition $X[m] Y[n]$ if $n \geq m$ and $y[n] X[m]$ otherwise.

Consider $\Delta_{0}=\sum_{j, n \in \mathbb{Z}}: X_{j}[-n] X_{j}[n]:$. If V is a PER of $L G$ then Δ_{0} acts on $V . \Delta_{0}$ is not in the center.

$$
\left[Y[m], \sum_{j}: X_{j}[-n] X_{j}[n]:\right]=Z_{n+m}-Z_{n}
$$

for $m \neq \pm n$ and is equal to $Z_{n+m}-Z_{n}+m Y[m] I$ if $m= \pm n$ where $Z_{n}=\sum_{j, k} \alpha_{j k} X_{k}[n] X_{j}[m-n]:$ and $\left[Y, X_{j}\right]=\sum_{k} \alpha_{j k} X_{k}$ (in g).

Add all of these up. We get

$$
\begin{aligned}
{\left[Y[m], \Delta_{0}\right]=} & m(2 Y I+\Omega Y)[m]=2 M\left(l+h^{\prime}\right) Y[m] \\
& =2\left(l+h^{\prime}\right) \frac{d}{d \theta}(Y[m]) .
\end{aligned}
$$

We can learn two thigs:
1.) We can get a central element $\Delta=\Delta_{0}+2\left(l+h^{\prime}\right) \frac{d}{d \theta}$
2.) $L_{n}=\frac{d}{d \theta}=-\frac{1}{2\left(l+h^{\prime}\right)} \Delta_{0}$

We can define the higher Δ_{m} by

$$
\Delta_{m}=\sum_{j, n \in \mathbb{Z}}: X_{j}[m-n] X_{j}[n]:
$$

Then $L_{m}=-\frac{1}{2\left(l+h^{\prime}\right)} \Delta_{m}$

Theorem: These satisfy the Virasaro relations with central charge

$$
K=\frac{l \cdot \operatorname{dim}(g)}{l+h^{\prime}}
$$

[^0]: Date: August 20, 2010.

