PRIMARY FIELDS, BOUNDEDNESS OF SMEARED PRIMARY FIELDS

SPEAKER: ARTURO PRAT-WALDRON
TYPIST:

Abstract

Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Goal: $H_{\lambda}, H_{\mu} \in$ IPER; we want to study their Connes fusion, relatedly their intertwiners. These are an honest rep of $L G \tilde{\rtimes} \mathbb{T}_{\text {rot }} . I \subset S^{1}$.

We want to study $\operatorname{Hom}_{L_{I} G}^{\text {bndd }}\left(H_{\lambda}, H_{m} u\right)$ and get explicit elements.
Example. $G=S U(N), V=\mathbb{C}^{N}$ the vector representation. $H=L^{2}\left(S^{1}, V\right)$ and $\operatorname{Cliff}(H) \circlearrowright \mathcal{F}_{V}$
$L G \rtimes \mathbb{T}_{\text {rot }} \rightarrow U_{\text {res }}(H) \rightarrow P U\left(\mathcal{F}_{V}\right)$
We have $H_{\lambda}, H_{\mu} \subset \mathcal{F}_{V}^{\otimes \ell}$ and P_{λ}, P_{μ} projections onto these subspaces.
Given $f \in L^{2}\left(S^{1}, V\right)$, send it to creation $a(f) \in B\left(\mathcal{F}_{V}^{\otimes \ell}\right)$.
we have an equivariance condition, $\pi(g) a(f) \pi(g)^{*}=a(g f)$, with $g \in L G \tilde{\rtimes} \mathbb{T}_{\text {rot }}$ and $\pi: L G \tilde{\rtimes} \mathbb{T}_{\text {rot }} \rightarrow U\left(\mathcal{F}_{V}^{\otimes \ell}\right)$.

Define $\phi_{\lambda, \mu}(f)=P_{\mu} a(f) P_{\lambda}^{*} \in \operatorname{Hom}^{b d d}\left(H_{\lambda}, H_{\mu}\right)$.
If $g \in \tilde{L_{I}} G$ and $\operatorname{supp}(f) \subset I^{c}$ then $g f=g$; So $\pi(g) \phi(f) \pi(g)^{*}=\phi(f)$. This implies $\phi(f) \in \operatorname{Hom}_{L_{I} G}\left(H_{\lambda}, H_{\mu}\right)$; we also have boundedness, $\|\phi(f)\| \leq$ $\|f\|_{L^{2}}$.

This gives us a procedure for construction bndd intertiwners; start with a function, construct an operator; as long as it's equivariant, we get an element of the intertwining space.

[^0]Definition. fields take functions on S^{1} and produce an element of the intertwiner $\operatorname{Hom}\left(H_{\lambda}, H_{\mu}\right)$. Primary means they are $L G \rtimes \mathbb{T}_{\text {rot }}$ equivariant.

Definition. V is a G-module, H_{λ}, H_{μ} are IPERs of level ℓ. Define $V^{\text {fin }}:=$ $V\left[z, z^{-1}\right]$ which is acted on by $L^{\text {poly }} \mathfrak{g}_{\mathbb{C}} \rtimes i \mathbb{R} d$. A primary field of charge V and level ℓ is a linear map

$$
\phi: V\left[z, z^{-1}\right] \otimes H_{\lambda}^{f i n} \rightarrow H_{\mu}^{f i n}
$$

which is $L^{\text {pol }} \mathfrak{g}_{\mathbb{C}} \rtimes i \mathbb{R} d$ equivariant.
$H_{\lambda}^{f i n}=\bigoplus_{N \geq 0}^{a l g} H_{\lambda}(n)$ are modes of the primary field $\phi . \phi(v, n):=\phi\left(v \otimes^{n}\right):$ $H_{\lambda}^{f i n} \rightarrow H_{\mu}^{f i n}$. The $L^{p o l} \mathfrak{g}_{\mathbb{C}} \rtimes i \mathbb{R} d$ equivariance is equivalent to
(1) $[X[n], \phi(v, m)]=\phi(X v, m+n)(2)[d, \phi(v, n)]=-n \phi(v, n)$

For $X \in \mathfrak{g}_{\mathbb{C}}, X(n)=X \otimes z^{n} \in L^{p o l} \mathfrak{g}_{\mathbb{C}}$.
(2) implies $\phi(v, n)$ lowers energy by $n: \phi(v, n): H_{\lambda}(k) \rightarrow H_{\mu}(k-n)$. (check: $d(\phi(v, n) \xi)=\phi(v, n) d \xi-n \phi(v, n) \xi=(k-n) \phi(v, n) \xi$.)

In particular, $\phi(v, 0): H_{\lambda}(0) \rightarrow H_{\mu}(0)$.
$\phi_{0}: V \otimes V_{\lambda} \rightarrow V_{\mu}$ in the initial term of ϕ.
Equation (1) implies equivariance w.r.t. \mathfrak{g}, which impies $\phi_{0} \in \operatorname{Hom}_{G}(V \otimes$ $\left.V_{\lambda}, V_{\mu}\right)$.

Lemma 0.1. The map

$$
\operatorname{Hom}_{L^{p o l} \mathfrak{g}_{\mathbb{C}} \rtimes i \mathbb{R} d}\left(V^{f i n} \otimes H_{\lambda}^{f i n}, H_{\mu}^{f i n}\right) \rightarrow \operatorname{Hom}_{G}\left(V \otimes V_{\lambda}, V_{\mu}\right)
$$

coming from $\phi \mapsto \phi_{0}$ is injective.

Proof. $H_{\lambda}^{f i n}$ is generated by the $H_{\lambda}(0)$ operators as a $L^{\text {pol }}\left(\mathfrak{g}_{\mathbb{C}}\right)$-module.

Denote the image of $\operatorname{Hom}_{L^{p o l} \mathfrak{g}_{\mathbb{C}} \rtimes i \mathbb{R} d}\left(V^{f i n} \otimes H_{\lambda}^{f i n}, H_{\mu}^{f i n}\right)$ in $\operatorname{Hom}_{G}\left(V \otimes V_{\lambda}, V_{\mu}\right)$ by $\operatorname{Hom}_{G}^{\ell}\left(V \otimes V_{\lambda}, V_{\mu}\right)$.

Proposition 0.2. $\operatorname{Hom}_{G}^{\ell}\left(V \otimes V_{\lambda}, V_{\mu}\right)=\operatorname{Hom}_{G}\left(V_{\lambda} \otimes V_{\mu}, V_{\nu}\right)$ if λ, μ, ν are admissible at level ℓ and at least one is minimal G-module: means highest weight is dominant. (audience doesn't think that's what this means. Miniscule? something about exterior algebra?)

1. $G=S U(N)$. Vector primary fields of $S U(N)$:

Definition. vector=charge of primary field is the vector rep $V=V_{\square}=\mathbb{C}^{N}$.

If f, g are signatures of admissible G-modules of level ℓ, we want to study $\operatorname{Hom}_{S U(N)}\left(V \otimes V_{f}, V_{g}\right)$.

Consider $V_{\square} \otimes V_{f}=\bigoplus_{g>f} V_{g}$ where g can be obtained from f by adding one box.

Let $W=V \otimes \mathbb{C}^{\ell} ; V$ injects into $W . \Lambda W=(\Lambda V)^{\otimes \ell}$ and

$$
\begin{aligned}
S: W \otimes(\Lambda W) & \rightarrow \Lambda W \\
w \otimes x & \mapsto w \wedge x
\end{aligned}
$$

$V_{f}, V_{g} \subset(\Lambda V)^{\ell}$.
Lemma 1.1. Let $T \in \operatorname{Hom}_{S U(N)}\left(\square \otimes V_{f}, V_{g}\right)$ and $T \neq 0$. WE can find $S U(N)$-equivariant projections $P_{\square}: W \rightarrow V_{\square}, P_{f}: W \rightarrow V_{f}, P_{g}: W \rightarrow V_{g}$, such that $T=P_{g} S\left(P_{\square}^{*} \otimes P_{f}^{*}\right)$.

Proof. consider a signature $f=\left(f_{1} \geq f_{2} \geq \cdots \geq f_{N}\right)$ which is admissible, ie $f_{1}-f_{N} \leq \ell$. Let $\left(e_{1}, \ldots e_{N}\right)$ be a basis of V_{\square}.

We let $e_{f}=e_{1}^{\otimes\left(f_{1}-f_{2}\right)} \otimes\left(e_{1} \wedge e_{2}\right)^{\otimes\left(f_{2}-f_{3}\right)} \cdots\left(e_{1} \wedge \cdots \wedge e_{N}\right)^{\otimes\left(\ell-f_{1}+f_{N}\right)}$.
for e_{g} we have a similar formula; the only way we can get a non-zero intertwiner is when g has one more box than f. ie, $g_{i}=f_{i}$ if $i \neq k$ and $g_{k}=f_{k}+1$. We get from e_{f} to e_{g} by adding $\pm e_{k}$ in the $\left(f_{1}-f_{k}\right)$ copy of $\Lambda V \subset(\Lambda V)^{\otimes \ell}$.

Example. (On camera)

Now take $P_{\square}: W=V_{\square} \otimes \mathbb{C}^{\ell}=\bigoplus_{\ell} V_{\square} \rightarrow V_{\square}$, projection onto the $\left(f_{1}-f_{k}\right)$ copy of V_{\square}.

We have $S U(N) e_{f} \hookrightarrow V_{f} \subset \Lambda W$, similarly for G, and P_{f} or P_{g} going the other direction: $\Lambda W \rightarrow V_{f}$.
$S\left(P_{\square}^{*} \otimes\right): V \square \otimes(\Lambda W) \rightarrow \Lambda W$ (recall $\Lambda(W)=(\Lambda V)^{\otimes \ell}$) which implies esterior multiplication by an element of V_{\square} in the $f_{1}-f_{k}$ copy of $\Lambda V \subset(\Lambda V)^{\otimes \ell}$.

Theorem 1.2. Any $S U(N)$-intertwiner $\phi_{0}: V_{\square} \otimes H_{\lambda}(0) \rightarrow H_{\mu}(0)$ is the initial term of a unique vector primary field. All vector primary fields arise as "compressions of fermions" so satisfy the L^{2} bound $\|\phi(f)\| \leq c\|f\|_{2}$ for all $f \in V\left[z, z^{-1}\right]$. the map extends continuously to $L^{2}\left(S^{1}, V_{\square}\right)$ and satisfies the global equivariance relation $\phi_{\mu}(G) \phi(f) \pi_{\lambda}(g)^{*}=\phi(g f)$ for all $g \in\left(L G \rtimes \tilde{\rtimes}_{r o t}\right)_{\ell}$

Proof. $\Lambda W=\mathcal{F}_{W}(0), W \subset L^{2}\left(S^{1}, W\right)$ as constant functions $-V_{\lambda}, V_{\mu} \subset W$, $H_{\lambda}, H_{\mu} \subset \mathcal{F}_{W}$ giving projections P_{λ}, P_{μ}.

Define $\phi_{\lambda, \mu}(v, n):=P_{\mu} a\left(v \otimes z^{n}\right) P_{\lambda}^{*}$.

Punchline: if I have a smeared primary field, I evaluate it on a complementary interval to get one of these intertwiners.

[^0]: Date: August 19, 2010.
 Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

