TOMITA-TAKESAKI THEORY FOR FERMIONS

SPEAKER: DMITRI PAVLOV TYPIST: EMILY PETERS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Outline:

- (1) Review of Tomita-Takesaki theory
- (2) Examples
 - (a) Modular Theory for fermions
 - (b) Segal's CFT

1. Review

Notation: $L_p := L^{1/p}$. We change notation because these L's form a graded algebra, and lower indices indicate covariance (in topology).

Definition (Definition/Theorem). If M is a von Neumann algebra, $L_*(M)$ is a $\mathbb{C}_{Re\geq 0}$ -graded complex unital *-algebra, with maps $L_p(M) \times L_q(M) \to L_{p+q}(M)$ and $*: L_p(M) \to L_{\bar{p}}(M)$.

 $L_0(M) \simeq M$ as *-algebras, and $L_1(M) \simeq M_*$ – canonically isomorphic to the predual. What's more, these are isomorphic as bimodules. (Analog to the Riesz lemma from functional analysis, $(L_1)^* \simeq L_0$.) (Bimodule structure on predual: $f \in M_*, m, x \in M$: (mf)(x) := f(xm).)

There is also a trace $tr: L_1 \to \mathbb{C}$ such that tr(xy - yx) = 0.

 $z \in L_p^+, p \in \mathbb{R} \iff$ there exists $y, y^*y = z$. If $p \in \mathbb{C}_{Re \ge 0}, q \in \mathbb{R}_{\ge 0}$.

Date: August 19, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

$$L_q^+(M) \to L_{qp}(M)$$

 $z \mapsto z^p$

and if $p \in \mathbb{R}_{>0}$ then $L_q^+ \to L_{qp}^+$ is a bijection.

If the real part of p is zero, then the last map can be extended to unbounded measures and their powers: $\hat{L}_q^+ \to L_{pq}$; elements $\phi \in \hat{L}_1^+$ are called *weights*

Question. How do you define these L_p for complex p?

Answer. If *M* is commutative, choose some measure μ . $L_p(\mu) := \{f | \int |f|^{1/Re(p)} < \infty\}$ if Re(p) > 0, or equal to the set of bounded functions if Re(p) = 0.

Definition. The modular automorphism group: M a von Neumann algebra, $\phi \in \hat{L}_1^+(M), t \in \mathbb{I} := \{x \in C | Re(x) = 0\}$. Then $\sigma_t^{\phi}(x) = \phi^t x \phi^{-t}, \sigma_t^{\phi} \in Aut(L_p(M))$

$$\sigma_s^{\phi}(xy) = \phi^s xy \phi^{-s} = \phi^x x \phi^{-s} \phi^s y \phi^{-s} = \sigma_s^{\phi}(x) \sigma_s^{\phi}(y) \text{ so it's a homomorphism.}$$

Also easy to show $\sigma_s^{\phi}(\sigma_t^{\phi}(x)) = \sigma_{s+t}^{\phi}(x)$.

Definition. Radon-Nikodym derivative $\phi, \psi \in L_1^+$ and $t \in \mathbb{I}$. $(D\phi: D\psi)_t = \phi^t \psi^t \in L_0$. Note that the imaginary power makes unbounded things, bounded.

Theorem 1.1. (KMS condition) Kubo-Martin-Schwinger

For any M, there is a bijection between weights $\phi \in \hat{L_1^+}(M)$, and continuous one-parameter groups of elements in L_t , $t \in \mathbb{I} \mapsto U(t) \in L_t(M)$ such that U(s+t) = U(s)U(t) and $U(s)^* = U(-s)$. The isomorphism is $U(t) = \phi^t$.

2. Examples

1. Suppose H is a \mathbb{C} -hilbert space and K is a closed real subspace such that $K \cap iK = 0$ and K + iK is dense in H. $Cl^{alg}(K)$ acts on ΛH (a Hilbert space) by the creation and annihilation operators. Cl(K) is the von Neumann algebra generated by $Cl^{alg}(K)$. $Cl(K^{\perp})$ acts on ΛH ; This makes ΛH a Cl(K), $Cl(K^{\perp})$ bimodule. Each of these is actually the commutant of the other on ΛH , whence $\Lambda H \simeq L_{1/2}(Cl(K))$. The vacuum vector $\Omega \in L_{1/2}(Cl(K))$ gives a finite weight by letting $\Omega = \phi^{1/2}, \phi \in L_1^+$.

For example, if $H = L_{1/2}(M)$ and $\phi \in \hat{L_1^+}$, let $K = \overline{M_{sa}\phi^{1/2} \cap L_{1/2}(M)}$. $\Delta^t \in Aut(L_{1/2}(M)) = Aut(H)$, and $* \in \tilde{Aut}(L_{1/2}(M)) = \tilde{Aut}(H)$.

- Theorem 2.1 (Jones-Wasserman). (1) ΛH is an invertible bimodule in the category of bimodules; the left and right actions are commutants of each other.
 - (2) *: $L_{1/2}(Cl(K)) = \Lambda H \circlearrowright$. For $\psi \in \Lambda H$, $\psi = a \land b \land c \land \cdots \land z$, $\psi^* = z^* \land \cdots \land a^*$. (3) $\sigma_t^{\phi} : \Lambda H \circlearrowright$. $\psi \in \Lambda H$, $\psi = a \land b \land \cdots \land z$: $\sigma_t^{\phi}(\psi) = \sigma_t(a) \land \cdots \sigma_t(z)$.