CONFORMAL NETS

SPEAKER: CORBETT REDDEN TYPIST: PAVEL SAFRONOV

1. More Möbius group

It is the group of conformal automorphisms of $D \subset \mathbb{C}$. It is denoted by $PSU(1,1) \cong PSL_2(\mathbb{R}).$

$$S^{1} - \text{picture} \quad \mathbb{R} - \text{picture}$$
$$z \leftrightarrow x$$
$$SU(1,1) \leftrightarrow SL_{2}(\mathbb{R})$$

It consists of translations $T_t x = x + t$, dilations $D_t x = e^{-2\pi t} x$ and rotations $R_t z = e^{-2\pi i t} z.$

<u>Fact</u>: we have an isomorphism of manifolds $SU(1,1) \cong D \times T \times R$.

Corollary: SU(1,1) acts transitively on $\{I\}_{I \subset S^1}$, and

- isotropy group of z ∈ S¹ is D × T.
 isotropy group of {z₁, z₂} ∈ S¹ is D.

2. Definitions of conformal nets and examples

Definition. A (vacuum) conformal net, denoted by CN (VCN), is a collection of von Neumann algebras $\{\mathcal{A}(I)\}_{I \subset S^1}$, parametrized by open, connected, non-dense intervals, that satisfy the following axioms

(1) (Isotony)
$$I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$$
.

(2) (Locality) $I \subset J' = S^1 \setminus \overline{J} \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)'.$

Date: August 18, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

- (3) (Möbius covariance) There exists a representation $PSU(1,1) \to U(H)$, such that $\pi(g)\mathcal{A}(I)\pi(g)^* = \mathcal{A}(gI)$.
- (4) (Positive energy) $R \subset PSU(1,1)$ should be positive energy. Vacuum nets also satisfy:
- (5) (Vacuum) There exists a unique (up to a factor) vacuum vector $\Omega \in H$, Ω invariant under the Möbius action and $\{\bigcup_{I \subset S^1} \mathcal{A}(I)\}'^{"}\Omega$ is dense in H.

Remark: although PSU(1,1) acts projectively, $U(1) \subset PSU(1,1)$ acts honestly.

Example:
$$\pi : LG_{\ell} \to U(H)$$
 be an IPER $\mathcal{A}(I) = \pi(L_IG)''$.

Definition. An irreducible representation is called a vacuum representation if it has a vacuum Ω invariant under PSU(1, 1).

Theorem 2.1. \mathcal{A} is a conformal net. If π is a vacuum representation, then \mathcal{A} is a vacuum conformal net.

Proof. (1) $I \subset J \Rightarrow L_I G \subset L_J G \Rightarrow \pi(L_I G)'' \subset \pi(L_I G)''.$

- (2) $I \cap J = \emptyset$, then $[L_I G, L_J G] = 1 \Rightarrow \mathcal{A}(I)$ commutes with $\mathcal{A}(J)$.
- (3) PSU(1,1) acts conformally on $D \subset S^1$, therefore canonically implemented.
- (4) True by assumption.
- (5) True by definition.

3. Properties

Theorem 3.1 (Reeh-Schlieder). If \mathcal{A} is a vacuum conformal net, then Ω is cyclic for each $\mathcal{A}(I)$: $\overline{\mathcal{A}(I)\Omega} = H$.

Corollary: Ω is cyclic and separating for each $\mathcal{A}(I)$.

Proof. Ω is separating for $\mathcal{A}(I) \Leftrightarrow \Omega$ is cyclic for $\mathcal{A}(I)'$. But Ω is cyclic for $\mathcal{A}(I') \subset \mathcal{A}(I)'$. \Box

 $\mathbf{2}$

Summary: $I \to \mathcal{A}(I)$, we have a cyclic and separating Ω , so can use Tomita-Takesaki theory. $S_I(A\Omega) = A^*\Omega$. From this we get the modular operators:

$$J_{I}\mathcal{A}(I)J_{I} = \mathcal{A}(I)'$$
$$\Delta_{I}^{it}\mathcal{A}(I)\Delta_{I}^{-it} = \mathcal{A}(I)$$

Theorem 3.2. \mathcal{A} is a vacuum conformal net.

- All $\mathcal{A}(I)$ are type III₁ factors.
- If inequality (almost always satisfied), then $\mathcal{A}(I)$ is hyperfinite and there is a unique (up to an isomorphism) type III₁-factor.

Question: why is it a factor?

Answer: it follows from the axioms of a conformal net, not true for higher dimensions.

Let $j_{S_+} \in SU_-(1,1)$ be the flip.

Theorem 3.3 (Geometric modular operators). \mathcal{A} is a vacuum conformal net.

(1)
$$\pi$$
 extends to $PSU_{\pm}(1,1) \xrightarrow{\pi} U_{\pm}(H)$ such that $J_{S_{+}} = \pi(j_{S_{+}})$.
(2) $\Delta_{S_{+}}^{it} = \pi(D_t)$.

Proof. (1) Check homomorphism for D, R, T. (2) Work with equivariance properties.

Theorem 3.4 (Haag duality). If \mathcal{A} is a vacuum conformal net, then $\mathcal{A}(I') = \mathcal{A}(I)'$.

Proof. Because of the Möbius covariance, it suffices to show only for S_+ .

$$J_{S_{+}}\mathcal{A}(S_{+})J_{S_{+}} = \mathcal{A}(S_{+})' = \pi(j_{S_{+}}\mathcal{A}(S_{+})\pi(j_{S_{+}}) = \mathcal{A}(S'_{+}).$$

4. Representations

Definition. A representation of a conformal net \mathcal{A} on a Hilbert space H_{π} is a collection of representations $\{\pi_I\}_{I \subset S^1}, \pi_I : \mathcal{A}(I) \to B(H_{\pi})$, such that

(1) (Consistency) $I \subset J \Rightarrow \pi_I = \pi_J |_{\mathcal{A}(I)}$.

- (2) There exists a representation $\pi^m : PSU(1,1) \to PU(H_\pi)$. $\pi^m(g)\pi_I(-)\pi^m(g)^* = \pi_{gI}(\alpha_{g-})$. Here α is a conjugation using the Möbius representation on \mathcal{A} .
- (3) Rotations in π^m are generated by a positive operator.

Question: is it true that $\mathcal{A}(I)$ and $\mathcal{A}(J)$ commute in the representation if I and J are disjoint?

Examples:

- Identity representation: $\pi(\mathcal{A}(I)) = \mathcal{A}(I)$.
- Let \mathcal{A}_0 be a vacuum conformal net of level ℓ IPER of LG. $\pi : \tilde{LG}_\ell \to U(H_\pi)$ an IPER. Obtain a representation of \mathcal{A}_0 .

Since π_0, π are subrepresentations of $\pi^{\otimes \ell}$ = factor representation, then local equivariance property from Min's talk to guarantee the map $\pi_0(L_IG)'' \rightarrow \pi(L_IG)''$.

4