CONFORMAL NETS

SPEAKER: CORBETT REDDEN
TYPIST: PAVEL SAFRONOV

1. More Möbius group

It is the group of conformal automorphisms of $D \subset \mathbb{C}$. It is denoted by $P S U(1,1) \cong P S L_{2}(\mathbb{R})$.

$$
\begin{aligned}
S^{1}-\text { picture } & \mathbb{R}-\text { picture } \\
z & \leftrightarrow x \\
S U(1,1) & \leftrightarrow S L_{2}(\mathbb{R})
\end{aligned}
$$

It consists of translations $T_{t} x=x+t$, dilations $D_{t} x=e^{-2 \pi t} x$ and rotations $R_{t} z=e^{-2 \pi i t} z$.

Fact: we have an isomorphism of manifolds $S U(1,1) \cong D \times T \times R$.
Corollary: $S U(1,1)$ acts transitively on $\{I\}_{I \subset S^{1}}$, and

- isotropy group of $z \in S^{1}$ is $D \times T$.
- isotropy group of $\left\{z_{1}, z_{2}\right\} \in S^{1}$ is D.

2. Definitions of CONFORMAL NETS AND EXAMPLES

Definition. A (vacuum) conformal net, denoted by CN (VCN), is a collection of von Neumann algebras $\{\mathcal{A}(I)\}_{I \subset S^{1}}$, parametrized by open, connected, non-dense intervals, that satisfy the following axioms
(1) (Isotony) $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$.
(2) (Locality) $I \subset J^{\prime}=S^{1} \backslash \bar{J} \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)^{\prime}$.

[^0](3) (Möbius covariance) There exists a representation $\operatorname{PSU}(1,1) \rightarrow U(H)$, such that $\pi(g) \mathcal{A}(I) \pi(g)^{*}=\mathcal{A}(g I)$.
(4) (Positive energy) $R \subset P S U(1,1)$ should be positive energy.

Vacuum nets also satisfy:
(5) (Vacuum) There exists a unique (up to a factor) vacuum vector $\Omega \in H, \Omega$ invariant under the Möbius action and $\left\{\bigcup_{I \subset S^{1}} \mathcal{A}(I)\right\}^{\prime \prime \prime} \Omega$ is dense in H.

Remark: although $\operatorname{PSU}(1,1)$ acts projectively, $U(1) \subset \operatorname{PSU}(1,1)$ acts honestly.

Example: $\pi: \tilde{L G_{\ell}} \rightarrow U(H)$ be an IPER $\mathcal{A}(I)=\pi\left(\tilde{L_{I}} G\right)^{\prime \prime}$.
Definition. An irreducible representation is called a vacuum representation if it has a vacuum Ω invariant under $\operatorname{PSU}(1,1)$.

Theorem 2.1. \mathcal{A} is a conformal net. If π is a vacuum representation, then \mathcal{A} is a vacuum conformal net.

Proof. (1) $I \subset J \Rightarrow \tilde{L_{I}} G \subset \tilde{L_{J}} G \Rightarrow \pi\left(\tilde{L_{I}} G\right)^{\prime \prime} \subset \pi\left(\tilde{L_{I}} G\right)^{\prime \prime}$.
(2) $I \cap J=\emptyset$, then $\left[\tilde{L_{I}} G, \tilde{L_{J}} G\right]=1 \Rightarrow \mathcal{A}(I)$ commutes with $\mathcal{A}(J)$.
(3) $\operatorname{PSU}(1,1)$ acts conformally on $D \subset S^{1}$, therefore canonically implemented.
(4) True by assumption.
(5) True by definition.

3. Properties

Theorem 3.1 (Reeh-Schlieder). If \mathcal{A} is a vacuum conformal net, then Ω is cyclic for each $\mathcal{A}(I): \overline{\mathcal{A}(I) \Omega}=H$.

Proof. Ω is separating for $\mathcal{A}(I) \Leftrightarrow \Omega$ is cyclic for $\mathcal{A}(I)^{\prime}$. But Ω is cyclic for $\mathcal{A}\left(I^{\prime}\right) \subset \mathcal{A}(I)^{\prime}$.

Summary: $I \rightarrow \mathcal{A}(I)$, we have a cyclic and separating Ω, so can use TomitaTakesaki theory. $S_{I}(A \Omega)=A^{*} \Omega$. From this we get the modular operators:

$$
\begin{aligned}
& J_{I} \mathcal{A}(I) J_{I}=\mathcal{A}(I)^{\prime} \\
& \Delta_{I}^{i t} \mathcal{A}(I) \Delta_{I}^{-i t}=\mathcal{A}(I)
\end{aligned}
$$

Theorem 3.2. \mathcal{A} is a vacuum conformal net.

- All $\mathcal{A}(I)$ are type $I I I_{1}$ factors.
- If inequality (almost always satisfied), then $\mathcal{A}(I)$ is hyperfinite and there is a unique (up to an isomorphism) type $I I I_{1}$-factor.

Question: why is it a factor?
Answer: it follows from the axioms of a conformal net, not true for higher dimensions.

Let $j_{S_{+}} \in S U_{-}(1,1)$ be the flip.
Theorem 3.3 (Geometric modular operators). \mathcal{A} is a vacuum conformal net.
(1) π extends to $P S U_{ \pm}(1,1) \xrightarrow{\pi} U_{ \pm}(H)$ such that $J_{S_{+}}=\pi\left(j_{S_{+}}\right)$.
(2) $\Delta_{S_{+}}^{i t}=\pi\left(D_{t}\right)$.

Proof. (1) Check homomorphism for D, R, T.
(2) Work with equivariance properties.

Theorem 3.4 (Haag duality). If \mathcal{A} is a vacuum conformal net, then $\mathcal{A}\left(I^{\prime}\right)=$ $\mathcal{A}(I)^{\prime}$.

Proof. Because of the Möbius covariance, it suffices to show only for S_{+}.
$J_{S_{+}} \mathcal{A}\left(S_{+}\right) J_{S_{+}}=\mathcal{A}\left(S_{+}\right)^{\prime}=\pi\left(j_{S_{+}} \mathcal{A}\left(S_{+}\right) \pi\left(j_{S_{+}}\right)=\mathcal{A}\left(S_{+}^{\prime}\right)\right.$.

4. Representations

Definition. A representation of a conformal net \mathcal{A} on a Hilbert space H_{π} is a collection of representations $\left\{\pi_{I}\right\}_{I \subset S^{1}}, \pi_{I}: \mathcal{A}(I) \rightarrow B\left(H_{\pi}\right)$, such that
(1) (Consistency) $I \subset J \Rightarrow \pi_{I}=\left.\pi_{J}\right|_{\mathcal{A}(I)}$.
(2) There exists a representation $\pi^{m}: P S U(1,1) \rightarrow P U\left(H_{\pi}\right) \cdot \pi^{m}(g) \pi_{I}(-) \pi^{m}(g)^{*}=$ $\pi_{g I}\left(\alpha_{g-}\right)$. Here α is a conjugation using the Möbius representation on \mathcal{A}.
(3) Rotations in π^{m} are generated by a positive operator.

Question: is it true that $\mathcal{A}(I)$ and $\mathcal{A}(J)$ commute in the representation if I and J are disjoint?

Examples:

- Identity representation: $\pi(\mathcal{A}(I))=\mathcal{A}(I)$.
- Let \mathcal{A}_{0} be a vacuum conformal net of level ℓ IPER of $L G . \pi: \tilde{L G} G_{\ell} \rightarrow$ $U\left(H_{\pi}\right)$ an IPER. Obtain a representation of \mathcal{A}_{0}.

Since π_{0}, π are subrepresentations of $\pi^{\otimes \ell}=$ factor representation, then local equivariance property from Min's talk to guarantee the map $\pi_{0}\left(L_{I} G\right)^{\prime \prime} \rightarrow$ $\pi\left(L_{I} G\right)^{\prime \prime}$.

[^0]: Date: August 18, 2010.
 Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

