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Knots and diagrams

Definition

A knot is the image of a smooth embedding S1 → R3.

Question: Are knots one-dimensional, or three?

Answer: No.
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Different diagrams for the same knot

Theorem (Reidemeister)

If two diagrams represent the same knot, then you can move
between them in a series of Reidemeister moves:

= = =
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Seeing that two knots are the same
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Seeing that two knots are different

Haken’s Algorithm

In 1961, Haken publishes a 130-page description of an algorithm to
determine whether a given knot is the unknot or not.

This algorithm runs in exponential time and memory (exponential
in the number of crossings) ... and is really hard to program.

Question

Are there better ways to tell if a knot is or isn’t the unknot?
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Knot invariants

A knot invariant is a map from knot diagrams to something
simpler: either C, or polynomials, or ‘simpler’ diagrams. Crucially,
the value of the invariant shouldn’t change under Reidemeister
moves.

Definition

The Kauffman bracket of a knot is a map from knot diagrams to
C[[A]]. Let d = −A2 − A−2. Then define〈 〉

= A

〈 〉
+ A−1

〈 〉
〈 〉

= d 〈 〉
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〈 〉
= A

〈 〉
+ A−1

〈 〉

= A2

〈 〉
+

〈 〉

+

〈 〉
+ A−2

〈 〉
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= A3

〈 〉
+A

〈 〉
+A

〈 〉

+A−1

〈 〉
+A

〈 〉
+A−1

〈 〉

+ A−1

〈 〉
+ A−3

〈 〉

= A3d3 + Ad2 + · · · = −A9 + A + A−3 + A−7
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The Kauffman bracket is invariant under Reidemeister 2:

〈 〉
= A2

〈 〉
+

〈 〉
+

〈 〉
+ A−2

〈 〉

=

〈 〉
+ (d + A2 + A−2)

〈 〉
=

〈 〉
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Exercise

The Kauffman bracket is also invariant under Reidemeister 3, but
it is not invariant under Reidemeister 1.

A modification of the Kauffman bracket which is invariant under
Reidemeister 1 is known as the Jones Polynomial.

Question

Does there exist a non-trivial knot having the same Jones
polynomial as the unknot?
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The n-color theorems
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We say a graph can be n-colored if you can color its faces using n
different colors such that adjacent regions are different colors.
Most coloring theorems are about planar graphs.

The two-color theorem

Any planar graph where every vertex has even degree can be
two-colored.

A three-color theorem (Grötszch 1959)

Planar graphs with no degree-three vertices can be three-colored.

The five-color theorem (Heawood 1890, based on Kempe 1879)

Any planar graph can be five-colored.
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The four-color theorem (Appel-Haken 1976)

Any planar graph can be four-colored.
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Definition/Theorem

The Euler characteristic of a graph is V − E + F . For planar
graphs, V − E + F = 2.

Example

V=6

E=12

F=8

V-E+F=2

Corollary

Every planar graph has a face which is either a bigon, triangle,
quadrilateral or pentagon.
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Let’s fail to prove the four-color theorem:

We first reduce it to a problem about trivalent graphs. If I can

color then I can color . So, replacing every

degree-n vertex with a small n-gonal face doesn’t change
colorability.
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Let’s prove the five-color theorem:
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color then I can color . So, replacing every
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Any planar graph with boundary is a functional from a sequence of
colors, to a number: how many ways are there to color in this
graph so that the boundary colors are the given sequence?

Example

{1, 2, 3} → 1

{1, 2, 2} → 0

{i , j , k} →
{

1 if i , j , k distinct;
0 else.

{1, 2, 3} → n − 3

{1, 2, 2} → 0

{i , j , k} →
{

n − 3 if i , j , k distinct;
0 else.
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So, = (n − 3) .

Similarly, = (n − 2) and = (n − 1).

We also have a less obvious relation:

+ = + .
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This last relation can be used to prove two more relations:

=
n − 4

2

(
+

)
+

n − 2

2

(
+

)

and

=
n − 5

5

 + + + +


+

2n − 5

5

 + + + +


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Proving the 5+-color theorem

= (n − 1) , = (n − 2) , = (n − 3) ,

=
n − 4

2

(
+

)
+

n − 2

2

(
+

)
,

=
n − 5

5
( + + + + )+

2n − 5

5
( + + + + ).

All these face-removing relations are positive for n ≥ 5.
Any planar graph contains at least one circle, bigon, triangle,
quadrilateral or pentagon (via Euler characteristic). So apply one
of these positive relations and repeat until you have nothing left
but a positive multiple of the empty diagram.
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Planar algebras

Definition

A planar diagram has

a finite number of inner boundary circles

an outer boundary circle

non-intersecting strings

a marked point ? on each boundary circle

?

?

? ?
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In normal algebra (the kind with sets and functions), we have one
dimension of composition:

X Y Z
f g

In planar algebras, we have two dimensions of composition

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?
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In abstract algebra, we often have a set whose structure is given by
some functions. For example, a group is a set G with a
multiplication law ◦ : G × G → G .
A planar algebra also has sets, and maps giving them structure;
there are a lot more of them.

Definition

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

an interpretation of any planar diagram as a multi-linear map

among Vi : ?

?

? ?

: V2 × V5 × V4 → V7
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Definition

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

Planar diagrams giving multi-linear map among Vi ,

such that composition of multilinear maps, and composition of
diagrams, agree:

V4 × V2 × V2 V6

V4 × V4 × V2

?

?

? ?
2

1

?

?

3

? ?
?

?
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First examples

Definition

A Temperley-Lieb diagram is a way of connecting up 2n points on
the boundary of a circle, so that the connecting strings don’t cross.

For example, TL3:
?

,
?

,
?

,
?

,
?

Example

The Temperley-Lieb planar algebra TL:

The vector space TLn has a basis consisting of all
Temperley-Lieb diagrams on 2n points.

A planar diagram acts on Temperley-Lieb diagrams by placing
the TL diagrams in the input disks, joining strings, and
replacing closed loops of string by ·δ.
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Example

The Temperley-Lieb planar algebra TL:

The vector space TLn has a basis consisting of all
Temperley-Lieb diagrams on 2n points.

A planar diagram acts on Temperley-Lieb diagrams by placing
the TL diagrams in the input disks, joining strings, and
replacing closed loops of string by ·δ.

?

?

◦
?

=

?

= δ2

?
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Definition

A tangle is a bunch of knotted strings whose endpoints are glued
down around a circle.

, , ,∈ T6

Example

The planar algebra of knot tangles T :

The vector space T2k has a basis of tangles with 2k endpoints.

a planar diagram acts on tangles by inserting them into the
picture; the result is a new tangle.
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Example

The planar algebra of knot tangles T :

The vector space T2k has a basis of tangles with 2k endpoints.

a planar diagram acts on tangles by inserting them into the
picture; the result is a new tangle.

?

?

◦ = =

?

Emily Peters Knots, the four-color Theorem, and von Neumann Algebras



Knots and knot diagrams
The n-color theorems

Planar algebras
Operator algebras

The planar algebra of knot tangles is generated, as a planar
algebra, by a single crossing subject to the Reidemeister

relations.
(This is a planar algebras restatement of “knots are mostly planar,
except where they cross; two diagrams are the same if we can get
between them with the Reidemeister moves.”)
The Kauffman bracket is a homomorphism of planar algebras
between T and TL.

Question

Are there non-Reidemeister Reidemeister moves? Can we define
the planar algebra of knot tangles using the same generator and a
different set of relations? Can we define the planar algebra of knot
tangles using a different generator (and different relations)?
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Operator Algebras

Linear algebra is the study of operators on finite dimensional vector
spaces: matrices.
Operator algebra is the study of operators on infinite dimensional
vector spaces. Such vector spaces are unweildly to say the least.
We impose closure/completeness conditions on the vector spaces
(Hilbert spaces) and also on the kinds of operators we look at
(bounded).
A von Neumann algebra is a subalgebra of bounded operators on a
Hilbert space which is closed in a given topology.
A factor is a highly non-commutative von Neumann algebra. The
only n-by-n matrices which commute with all other n-by-n matrices
are multiple of the identity. Similarly, the only operators in a factor
which commute with all the other are multiples of the identity.
A subfactor is a pair of factors, one contained in the other.
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Summary: a subfactor is a pair A ⊂ B, where A and B are
(usually) infinite algebras, and both are ‘as non-commutative as
possible.’
Subfactors are big, and slippery. Just like with knots, invariants (if
you can calculate them) are very useful.
My favorite invariant of a subfactor, the ‘standard invariant,’ is a
planar algebra!

Question

Emily, why would you study those things?

Answer

Factors have no ideals – making them ‘non-commutative fields.’ A
subfactor, therefore, is a non-commutative analog of a field
extension. The standard invariant of a subfactor is an analog to
the Galois group of a field extension.
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subfactor planar algebras

The standard invariant of a subfactor is a planar algebra P with
some extra structure:

P0 is one-dimensional
All Pk are finite-dimensional

Sphericality: X = X

Inner product: each Pk has an adjoint ∗ such that the bilinear
form 〈x , y〉 := yx∗ is positive definite

Call a planar algebra with these properties a subfactor planar
algebra.

Theorem (Jones, Popa)

Subfactors give subfactor planar algebras, and subfactor planar
algebras give subfactors.
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Example

Temperley-Lieb is a subfactor planar algebra if δ > 2:

P0 is one dimensional

dim(Pn) = cn =
1

n + 1

(
2n
n

)
circles are circles

Positive definiteness is the difficulty, and the only place where
δ > 2 comes in.
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The Extended Haagerup planar algebra

[Bigelow, Morrison, Peters, Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single
S ∈ V16, subject to the relations

S?

?

···
= S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

=

8

8

f (8) ,
15

S

?

18

f (18) = i

√
[8][10]

[9]

9 9

7
S

?

S

?

18

f (18) ,

16

S?

20

f (20) = [2][20]
[9][10]

9 2 9

7 7
S

?

S

?

S

?

20

f (20)

The extended Haagerup planar algebra is a subfactor planar algebra
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The Extended Haagerup planar algebra redux

[Bigelow, Morrison, Peters, Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single
S ∈ V16, subject to the relations

S?

?

···
= S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

∈ TL8 , 15

S

? = α 9 9

7
S

?

S

?

.

The extended Haagerup planar algebra is a subfactor planar algebra
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Proving that the extended Haagerup generators and relations give
a subfactor planar algebra: getting the size right is the hard part.
Let V be the extended Haagerup planar algebra. How do we know
V 6= {0}? How do we know dim(V0) = 1?

Showing that V 6= {0} is technical and boring: It involves finding a
copy of V inside a bigger planar algebra which we understand
better.

dim(V0) = 1 means we can evaluate any closed diagram as a
multiple of the empty diagram. The evaluation algorithm treats
each copy of S as a ‘jellyfish’ and using the one-strand and
two-strand substitute braiding relations to let each S ‘swim’ to the
top of the diagram.
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Begin with arbitrary planar network of Ss.

Now float each generator to the surface, using the relation.
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The diagram now looks like a polygon with some diagonals,
labelled by the numbers of strands connecting generators.

=

Each such polygon has a corner, and the generator there is
connected to one of its neighbours by at least 8 edges.

Use S2 ∈ TL to reduce the number of generators, and
recursively evaluate the entire diagram.
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The End!
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