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Index less than 4

Theorem (Jones, Ocneanu, Kawahigashi, Izumi, Bion-Nadal)

The principal graph of a subfactor of index less than 4 is one of

An = ∗ · · ·
n vertices

, n ≥ 2 index 4 cos2( π
n+1 )

D2n = ∗ · · ·

2n vertices

, n ≥ 2 index 4 cos2( π
4n−2 )

E6 = ∗ index 4 cos2( π
12 ) ≈ 3.73

E8 = ∗ index 4 cos2( π
30 ) ≈ 3.96
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Suppose N ⊂ M is a subfactor, ie a unital inclusion of type II1
factors.

Definition

The index of N ⊂ M is [M : N] := dimN L2(M).

Example

If R is the hyperfinite II1 factor, and G is a finite group which acts
outerly on R, then R ⊂ R o G is a subfactor of index |G |.

If H ≤ G , then R o H ⊂ R o G is a subfactor of index [G : H].

Theorem (Jones)

The possible indices for a subfactor are

{4 cos(
π

n
)2|n ≥ 3} ∪ [4,∞].
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Let X =NMM and X =M(Mop)N , and ⊗ = ⊗N or ⊗M as needed.

Definition

The standard invariant of N ⊂ M is the (planar) algebra of
bimodules generated by X :

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

Definition

The principal graph of N ⊂ M has vertices for (isomorphism
classes of) irreducible N-N and N-M bimodules, and an edge from

NYN to NZM if Z ⊂ Y ⊗ X (iff Y ⊂ Z ⊗ X ).

Ditto for the dual principal graph, with M-M and M-N bimodules.
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Example: R o H ⊂ R o G

Again, let G be a finite group with subgroup H, and act outerly on
R. Consider N = R o H ⊂ R o G = M.
The irreducible M-M bimodules are of the form R ⊗ V where V is
an irreducible G representation. The irreducible M-N bimodules
are of the form R ⊗W where W is an H irrep.
The dual principal graph of N ⊂ M is the induction-restriction
graph for irreps of H and G .

Example (S3 ≤ S4)

trivial standard V sign⊗standard sign

trivial standard sign

(The principal graph is an induction-restriction graph too, for H
and various subgroups of H.)
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Index 4

Theorem (Popa)

The principal graphs of a subfactor of index 4 are extended Dynkin
diagram:

A
(1)
n = ∗ · · ·

· · ·
n + 1 vertices

, n ≥ 1, D
(1)
n = ∗ · · ·

n + 1 vertices

, n ≥ 3,

E
(1)
6 = ∗ , E

(1)
7 = ∗ ,

E
(1)
8 = ∗ , A∞ = ∗ · · · ,

A
(1)
∞ = ∗ · · ·

· · ·
, D∞ = ∗ · · ·

There are multiple subfactors for some of these principal graphs

(eg, n − 1 non-isomorphic hyperfinite subfactors for D
(1)
n ).
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Haagerup’s list

In 1993 Haagerup classified possible principal graphs for
subfactors with index between 4 and 3 +

√
3 ≈ 4.73:

, , , . . .,

(≈ 4.30, 4.37, 4.38, . . .)

, (≈ 4.56)

, , . . . (≈ 4.62, 4.66, . . .).

Haagerup and Asaeda & Haagerup (1999) constructed two of
these possibilities.

Bisch (1998) and Asaeda & Yasuda (2007) ruled out infinite
families.

Last year we (Bigelow-Morrison-Peters-Snyder) constructed
the last missing case. arXiv:0909.4099
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Extending the classification

We work with principal graph pairs, meaning both principal and
dual principal graphs, and information on which bimodules are
dual.

Example (The Haagerup subfactor’s principal graph pair)( )
The pair must satisfy an associativity test:

(X ⊗ Y )⊗ X ∼= X ⊗ (Y ⊗ X )

We can efficiently enumerate such pairs with index below some
number L up to a given rank or depth, obtaining a collection of
allowed vines and weeds.
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Definition

A vine represents an integer family of principal graphs, obtained by
translating the vine.

Definition

A weed represents an infinite family, obtained by either translating
or extending arbitrarily on the right.

We can hope that as we keep extending the depth, a weed will
turn into a set of vines. If all the weeds disappear, the enumeration
is complete. This happens in favorable cases (e.g. Haagerup’s
theorem up to index 3 +

√
3), but generally we stop with some

surviving weeds, and have to rule these out ‘by hand‘.
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Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

Every (finite depth) II1 subfactor with index less than 5 sits inside
one of 54 families of vines (see below), or 5 families of weeds:

C =
(

,
)
,

F =
(

,
)
,

B =
(

,
)
,

Q =
(

,
)
,

Q′ =
(

,
)
.

Theorem (Morrison-Penneys-P-Snyder, part II, arXiv:1007.2240)

Using quadratic tangles techniques, there are no subfactors in the
families C or F .
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Theorem (Calegari-Morrison-Snyder, arXiv:1004.0665)

In any family of vines, there are at most finitely many subfactors,
and there is an effective bound.

Corollary (Penneys-Tener, part IV, arXiv:1010.3797)

There are only four possible principal graphs of subfactors coming
from the 54 families( )(

,
)(

,
)(

,
)
.
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Recent results

Theorem (Morrison-Penneys-Peters-Snyder, part V, work in
progress)

There are no subfactors coming from the weed
B =

(
,

)
Proof.

A connection on the principal graph only exists at a certain index
(one for each supertransitivity), but the only graphs with exactly
that index are certain infinite graphs which are easily ruled out.

Izumi, work in progress

Also by a connection argument, the only subfactor coming from
the weeds Q or Q′ is 3311.

(
,

)
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We’re thus very close to completing the classification up to index 5:

Conjecture

There are exactly ten subfactors other than Temperley-Lieb with
index between 4 and 5.( )

,(
,

)
,(

,
)
,

The 3311 GHJ subfactor (MR999799), with index 3 +
√

3(
,

)
,

Izumi’s self-dual 2221 subfactor (MR1832764), with index
5+
√

21
2

(
,

)
along with the non-isomorphic duals of the first four, and the
non-isomorphic complex conjugate of the last.
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Index exactly 5

There are 5 principal graphs that come from group-subgroup
subfactors, and these are known to be unique.(

,
)

1 ⊂ Z/5Z(
,

)
Z/2Z ⊂ D10(

,

)
Z/4Z ⊂ Z/5Z o Aut(Z/5Z)(

,

)
A4 ⊂ A5(

,

)
S4 ⊂ S5

We still have a few other possibilities to rule out(
,

)(
,

)(
,

)
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Index beyond 5

Somewhere between index 5 and index 6, things get wild:

Theorem (Bisch-Nicoara-Popa)

At index 6, there is an infinite one-parameter family of irreducible,
hyperfinite subfactors having isomorphic standard invariants.

and

Theorem (Bisch-Jones)

A2 ∗ A3 is an infinite depth subfactor at index 2τ2 ∼ 5.23607.

∗ · · · ,

∗ · · ·
· · ·
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Classification above index 5 looks hard, but we can still fish for
examples (only supertransitivity > 1)!
Here are some graphs that we find. (A few are previously known)(

,
)

(from SUq(3) at a root of unity, index ∼ 5.04892)

At index 2τ2 ∼ 5.23607(
,

)(
,

)(
,

)(
,

)
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(
,

)
(“Haagerup +1” at index 7+

√
13

2 ∼ 5.30278)(
,

)
at

1
2

(
4 +
√

5 +
√

15 + 6
√

5
)
∼ 5.78339(

,
)

at 3 + 2
√

2 ∼ 5.82843

And at index 6(
,

)(
,

)
and several more!
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The End!
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