The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by 7 Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

Constructing the Haagerup planar algebra

Emily Peters

University of California, Berkeley

October 23, 2008

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

What is the Haagerup planar algebra?

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations Algorithm to evaluate The Haagerup planar algebra (HPA) is a subfactor planar algebra which has principal graph H = -

Closed circles count for
$$\delta = \sqrt{\frac{5+\sqrt{13}}{2}} \approx 2.07$$
.

The Haagerup planar algebra is the smallest (in terms of δ) "exotic" planar algebra.

▲□▶▲□▶▲□▶▲□▶ □ のQで

How to construct the Haagerup planar algebra

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations Algorithm to evaluate The Haagerup subfactor was originally constructed by Haagerup-Asaeda, and later by Izumi.

To prove the existence of the Haagerup planar algebra, without invoking the Haagerup subfactor, we

- extract information about a presentation of HPA from *H*.
- use this information to find a potential generator T of HPA inside PABG(H).
- prove that T generates a subfactor planar algebra and this planar algebra has principal graph H.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

The annular Temperley-Lieb algebra

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

Definition

The <u>annular Temperley-Lieb algebra</u> is the set of planar tangles with only one input disk.

Example

Definition

An <u>annular Temperley-Lieb module</u> is a family of vector spaces which has an action of the annular Temperley-Lieb algebra.

イロト 不得 とうほう イヨン

Irreducible annular Temperley-Lieb modules

The Haagerup planar algebra

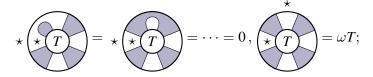
E. Peters

Getting information about HPA from *H*

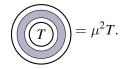
Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations Algorithm to evaluate An irreducible module of the annular Temperley-Lieb algebra is generated by a lowest weight element T.

If wt(T) > 0 then we have (for some root of unity ω)



If wt(*T*) = 0 we have (for some μ , $0 \le \mu \le \delta$)



Combinatorics of irreducible annular Temperley-Lieb modules

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations Algorithm to evaluate Irreducible annular TL-modules are indexed by their low weight and an eigenvalue:

■
$$V^{0,\mu}$$
, for $\mu \in [0, \delta]$
■ $V^{\ell,\omega}$, for $\omega^{\ell} = 1$.

Combinatorics of these modules are easy! Assuming $\delta > 2$, let's count their *k*-boxes:

$$\dim V_k^{0,\delta} = \frac{1}{k+1} \binom{2k}{k}, \dim V_k^{0,\mu} = \binom{2k}{k}, \dim V_k^{0,0} = \frac{1}{2} \binom{2k}{k}$$
$$\dim V_k^{\ell,\omega} = \binom{2k}{k-\ell}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram This dimension count makes it easy to decompose a given annular Temperley-Lieb module into irreducibles. And all planar algebras are annular Temperley-Lieb modules!

Example

Suppose the Haagerup planar algebra exists. Then

k =	0	1	2	3	4	5	6
$\dim HPA_k$	1	1	2	5	15	52	199

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by 7 Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram This dimension count makes it easy to decompose a given annular Temperley-Lieb module into irreducibles. And all planar algebras are annular Temperley-Lieb modules!

Example

Suppose the Haagerup planar algebra exists. Then

k =	0	1	2	3	4	5	6
$\dim HPA_k$	1	1	2	5	15	52	199
dim $V_k^{0,\delta}$	1	1	2	5	14	42	132

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by 7 Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram This dimension count makes it easy to decompose a given annular Temperley-Lieb module into irreducibles. And all planar algebras are annular Temperley-Lieb modules!

Example

Suppose the Haagerup planar algebra exists. Then

k =	0	1	2	3	4	5	6
		1	2	5	15	52	199
	1	1	2	5	14	42	132
dim $V_k^{\tilde{4},\omega_1}$	0	0	0	0	1	10	66

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram This dimension count makes it easy to decompose a given annular Temperley-Lieb module into irreducibles. And all planar algebras are annular Temperley-Lieb modules!

Example

Suppose the Haagerup planar algebra exists. Then

k =	0	1	2	3	4	5	6
$\dim HPA_k$	1	1	2	5	15	52	199
$\begin{array}{c} \dim HPA_k \\ \dim V_k^{0,\delta} \\ \dim V_k^{4,\omega_1} \\ \dim V_k^{4,\omega_1} \\ \dim V_k^{6,\omega_2} \end{array}$	1	1	2	5	14	42	132
$\dim V_k^{4,\omega_1}$	0	0	0	0	1	10	66
dim V_k^{6,ω_2}	0	0	0	0	0	0	1

so we have

$$HPA \simeq V^{0,\delta} \oplus V^{4,\omega_1} \oplus V^{6,\omega_2} \oplus \cdots$$

Identifying a potential generator T of HPA

The Haagerup planar algebra

E. Peters

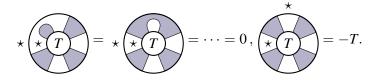
Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations Algorithm to evaluate a

$$HPA \simeq V^{0,\delta} \oplus V^{4,-1} \oplus V^{6,?} \oplus \cdots$$

Therefore, to present the Haagerup planar algebra, we need a generator T which has eight strands, and for which



In $PABG(H)_4$ (which is 375-dimensional), we perform a similar annular Temperley-Lieb module analysis. We find there is a four-dimensional subspace of low weight four, eigenvalue -1 elements.

A potential generator T in $PABG(H)_4$

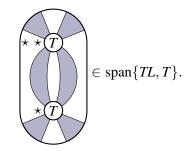
The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations Algorithm to evaluate a closed diagram There is a unique element T in $PABG(H)_4$ satisfying these annular relations, and also



But how do we show that the planar algebra generated by *T* is the Haagerup planar algebra?

▲□▶▲□▶▲□▶▲□▶ □ のQで

How to show PA(T) is the Haagerup planar algebra

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by *T* Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram We need to show that dim $PA(T)_0 = 1$; then we know PA(T) is a subfactor planar algebra with $\delta = \sqrt{\frac{5+\sqrt{13}}{2}}$ and finite depth, and so it must have principal graph *H*.

Our goal is to show that any closed diagram is a multiple of the empty diagram.

We do this by giving a short list of "quadratic" relations, and making a graph-theory argument to show these suffice.

We prove these relations with linear algebra.

Traces of T^2 , T^3 , T^4

The Haagerup planar algebra

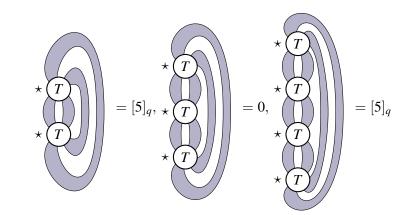
E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by 2 Linear algebra

Algorithm to evaluate a closed diagram We can compute the following traces of products of Ts:



"Twisted" traces of T^2 , T^3 , T^4

E. Peters

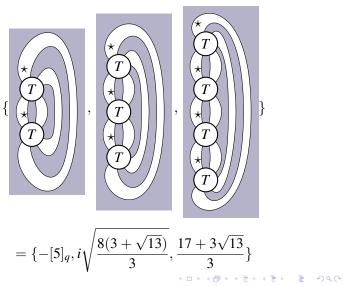
Getting information about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by 2 Linear algebra

Quadratic relations

Algorithm to evaluate a closed diagram



The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator *T* of HPA

The planar algebra generated by 2 Linear algebra

Quadratic relations

Algorithm to evaluate a closed diagram

Now we use these relations, and Bessel's inequality, to show

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

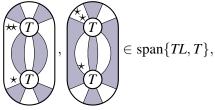
Finding a potential generator T of HPA

The planar algebra generated by

Quadratic relations

Algorithm to evaluate a closed diagram

Now we use these relations, and Bessel's inequality, to show



**(T

•

The Haagerup planar algebra

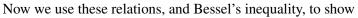
E. Peters

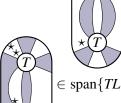
Getting informatior about HPA from *H*

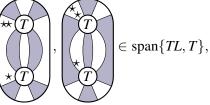
Finding a potential generator T o HPA

The planar algebra generated by 7 Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram







▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 \in span{TL, $ATL_5(T)$ },

E. Peters

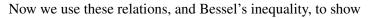
Getting information about HPA from *H*

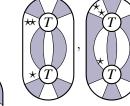
Finding a potential generator T o HPA

**

The planar algebra generated by 7 Linear algebra Quadratic relations

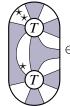
Algorithm to evaluate a closed diagram



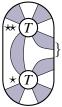


$$\in$$
 span $\{TL, T\},$

 \in span{ $TL, ATL_5(T)$ },



 \in span{ $TL, ATL_6(T),$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへの

Any closed diagram can be evaluated

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by 7 Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

Now we're ready to show

Theorem

 $PA(T)_0$ is one dimensional.

Any closed diagram can be evaluated

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator *T* of HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

Now we're ready to show

Theorem

 $PA(T)_0$ is one dimensional.

Proof by induction.

This theorem says that any closed diagram is a multiple of the empty diagram.

Any closed diagram with no Ts is a Temperley-Lieb diagram.

Any closed diagram with one T has a strand connecting T to itself.

Any closed diagram involving two or more Ts can be replaced by a diagram with fewer Ts, using the quadratic relations above.

Reducing the number of Ts in a diagram

The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram This last step – any closed diagram involving two or more Ts can be replaced by a diagram with fewer Ts, using the quadratic relations – requires some justification.

Certainly, if any two Ts in the closed diagram are attached by three adjacent strands, it is easy to see that the diagram can be replaced by [a weighted sum of] diagrams involving fewer Ts.

But what if the diagram only has *T*s connected by one or two strands? Then we want to change it around until it has two *T*s connected by three strands.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Creating a triple edge

The Haagerup planar algebra

E. Peters

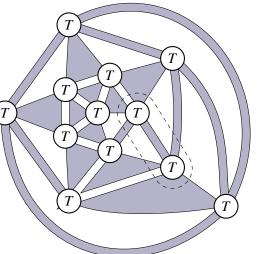
Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

A little more about this last step:



Creating a triple edge

The Haagerup planar algebra

E. Peters

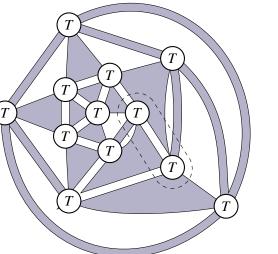
Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

A little more about this last step:



The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Haagerup planar algebra

E. Peters

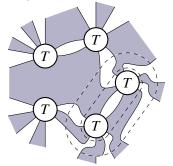
Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()



The Haagerup planar algebra

E. Peters

Getting informatior about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram If we can't immediately create a triple edge, we can change the diagram until we can do so:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conclusion

The Haagerup planar algebra

E. Peters

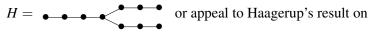
Getting information about HPA from *H*

Finding a potential generator T of HPA

The planar algebra generated by T Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram Therefore $PA(T)_0$ is one-dimensional, and the planar algebra generated by *T* is a subfactor planar algebra.

We can either directly prove it has principal graph



possible principal graphs, to conclude

Theorem

PA(T) is a subfactor planar algebra with principal graph H.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The end

The Haagerup planar algebra

E. Peters

Getting information about HPA from *H*

Finding a potential generator T o HPA

The planar algebra generated by 7 Linear algebra Quadratic relations

Algorithm to evaluate a closed diagram

THANK YOU!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ