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Invariants of subfactors

N is a subfactor of M: 1 ∈ N ⊂ M is an inclusion of II1 factors.
Three invariants of N ⊂ M, from weakest to strongest:

the index measures the relative size of N;

[M : N] ∈ {4 cos
(π

n

)2
|n = 3, 4, 5, . . .} ∪ [4,∞]

the principal graph describes tensor product rules of
N,M-bimodules. If X = NMM , and A and B are irreducible
bimodules, there is an edge from A to B if B ⊂ A⊗ X .

the standard invariant is a family of algebras, with
diagrammatic structure. Specifically Vk = EndN,M(X⊗k).

Theorems of Popa and Jones allow us to move between subfactors
and planar algebras (sometimes).
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Which graphs are principal graphs?

Subfactors with [M : N] ≤ 4 have Dynkin diagrams or extended
Dynkin diagrams as principal graphs.

Question

What are principal graphs for (finite-depth) subfactors with index
slightly more than 4?

Haagerup (1994) found two families of candidates and one
additional candidate, having index between 4 and 3 +

√
3.
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Classification of small-index subfactors

Haagerup’s possible principal graphs for subfactors with index
less than 3 +

√
3:

, , , . . .,

,

, , . . . .

Haagerup and Asaeda & Haagerup (1999) constructed two of
these possibilities.

Bisch (1998) and Asaeda & Yasuda (2007) ruled out infinite
families.

Today, we construct the missing example (‘extended
Haagerup’), and complete the classification.
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Definition of planar algebras

A planar algebra is

a family of vector spaces {Vi ,±}i∈Z≥0

on which ‘planar tangles’ act; for example,

2

1

?

?

3
? ?

gives a map V1,+ ⊗ V2,+ ⊗ V2,− → V3,+
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Temperley-Lieb: TLn,±(δ) is the span (over C) of non-crossing
pairings of 2n points arranged around a circle, with formal addition.

Example

TL3 = SpanC{
?

,
?

,
?

,
?

,
?

}.

Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings,and throwing out closed loops at a cost of ·δ.

Example

?

? (
?

)
=

?

= δ2

?
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The standard invariant

The standard invariant of a subfactor is the sequence of algebras

EndN,M(X ) ⊂ EndN,M(X⊗2) ⊂ EndN,M(X⊗3) ⊂ · · ·

together with its algebraic – planar algebraic – structure.

Theorem (Jones)

The standard invariant is a planar algebra.

Theorem (Popa)

Subfactor planar algebras give subfactors, having the same index
and principal graph.

To paraphrase, this means constructing planar algebras is
equivalent to constructing subfactors.

E. Peters The extended Haagerup planar algebra



Small-index subfactors
Planar algebras

Constructing the extended Haagerup planar algebra

Subfactor planar algebras

A subfactor planar algebra has

dim V0,+ = dim V0,− = 1;

spherical trace: X = X ;

an involution ∗ on Vn,±, such that 〈x , y〉 = tr (y∗x) is positive
definite.

From these properties, it follows that closed circles count for δ,
and δ =

√
[M : N].
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Constructing extended Haagerup

We will give a generators-and-relations construction of the
extended Haagerup planar algebra.

The first step is to find a generator inside a larger planar algebra,
where calculations are straightforward.

Next, we prove some relations on our generator inside this planar
algebra.

Finally, we need to prove we have enough relations to guarantee
that S generates a subfactor planar algebra.
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Properties of extended Haagerup

If the extended Haagerup graph is the graph of a subfactor planar
algebra, what can we say about that planar algebra?

It can be singly generated as a planar algebra, by an uncappable
generator S which is an eigenvector of rotation (of eigenvalue −1):

S?? ··· = 0 , S?? ··· = 0 , . . . , S?

?

··· = −S

and satisfies the multiplicative relation

S S
8 8 8 = f (8) ∈ TL8
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Graph planar algebras

The graph planar algebra of a bipartite graph has

loops based at an even/odd vertex of length 2k are a basis of
GPA(G )k,+/GPA(G )k,−.

the action of planar tangles is based on the concatenation of
paths and the Frobenius-Perron eigenvector of G .

Though GPA(G ) is too big to be a subfactor planar algebra
(dim GPA(G )0,+ = #{even vertices} > 1), it has a spherical trace
and positive definite sesquilinear form. Further, closed circles in
GPA(G ) count for δ, the Frobenius-Perron eigenvalue of the graph.

Theorem (Jones, unpublished)

If P is a finite depth subfactor planar algebra with principal graph
G , P ↪→ GPA(G ).
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Looking for an extended Haagerup generator

To construct the extended Haagerup subfactor, we start with the
graph planar algebra of its principal graph eH.

GPA(eH)8,+ is 148475-dimensional; luckily the subspace X of
uncappable, ρ = −1 elements of GPA(eH)8,+ is only
19-dimensional. Unluckily, it is not natural in our given basis.

We find an element S ∈ X which further satisfies

S S
8 8 8 = f (8).

S can be written as a direct sum of 60 matrices, each of size less
than 119 by 119. With computer assistance, we calculate the
moments tr

(
S2
)
, tr
(
S3
)
, tr
(
S4
)
.
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Quadratic relations

Now, we use those moments and linear algebra to prove relations:

15

S
?

18

f (18) = i

√
[8][10]

[9]

9 9

7
S

?

S

?

18

f (18)

16

S?

20

f (20) = [2][20]
[9][10]

9 2 9

7 7
S

?

S

?

S

?

20

f (20) .
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S generates extended Haagerup

Theorem

These relations are sufficient to show that S generates the
extended Haagerup planar algebra.

GPA(eH) is almost a subfactor planar algebra; it is spherical and
positive definite. All we are missing is dim V0,+ = dim V0,− = 1.

If S generates a sufficiently small planar algebra (i.e.,
dim PA(S)0 = 1), then PA(S) is a subfactor planar algebra.
Further, PA(S) must be the extended Haagerup planar algebra,
because this is the only possible principal graph with

δ =

√
8

3
+

1

3
3

√
13

2

(
−5− 3i

√
3
)

+
1

3
3

√
13

2

(
−5 + 3i

√
3
)
≈ 2.09218.
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The Jellyfish algorithm, part I

To show PA(S)0,+ and PA(S)0,− are one-dimensional, we need an
evaluation algorithm: a way to reduce any closed diagram in Ss to
a multiple of the empty diagram.

Our algorithm works by letting the copies of our generator S ‘swim
to the surface,’ and then removing them in pairs.

The relations we just saw let us pull S through a strand. Use this
to bring all generators to the outside (multiplying if necessary).
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The jellyfish algorithm in action

Begin with arbitrary planar network of Ss.

Now float each generator to the surface, using the relation.
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The Jellyfish algorithm, part II

Now we have a polygon with some diagonals, labelled by the
numbers of strands connecting generators.

=

Each such polygon has an isolated vertex. The generator there
is connected to one of its neighbors by at least 8 strands.

Use S2 = f (8) to reduce the number of generators, and repeat
until zero or one copies of the generator remain. The resulting
picture is then in Temperley-Lieb, or zero.
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The end!

In summary: S generates a subfactor planar algebra, with index
δ2 ≈ 4.37722; this must be the extended Haagerup planar algebra.
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