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Preface
My mission in this book is to encourage programmers to think mathematically
as they develop programs.

This idea is nothing new to programmers in science and engineering fields,
because much of their work is inherently based on numerical mathematics
and the mathematics of real numbers. However, there is more to mathematics
than numbers.

Some of the mathematics that is most relevant to programming is known as
“discrete mathematics”. This is the mathematics of discrete elements, such as
symbols, character strings, truth values, and “objects” (to use a programming
term) that are collections of properties. Discrete mathematics is concerned
with such elements; collections of them, such as sets and sequences; and
connections among elements, in structures such as mappings and relations.
In many ways discrete mathematics is more relevant to programming than
numerical mathematics is: not just to particular kinds of programming, but
to all programming.

Many experienced programmers approach the design of a program by
describing its input, output, and internal data objects in the vocabulary of
discrete mathematics: sets, sequences, mappings, relations, and so on. This is
a useful habit for us, as programmers, to cultivate. It can help to clarify our
thinking about design problems; in fact, solutions often become obvious. And
we inherit a well-understood vocabulary for specifying and documenting our
programs and for discussing them with other programmers.1

For example, consider this simple programming problem. Suppose that we
are writing software to analyze web pages, and we want some code that will
read two web pages and find all of the URLs that appear in both. Some
programmers might approach the problem like this:

1This paragraph and the example that follows are adapted from a previous book: Allan M. Stavely,
Toward Zero-Defect Programming (Reading, Mass.: Addison Wesley Longman, 1999), 142–143.
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First I'll read the first web page and store all the URLs I find in a list.
Then I'll read the second web page and, every time I find a URL, search
the list for it. But wait: I don't want to include the same URL in my
result more than once. I'll keep a second list of the URLs that I've
already found in both web pages, and search that before I search the
list of URLs from the first web page.

But a programmer who is accustomed to thinking in terms of discrete-
mathematical structures might immediately think of a different approach:

The URLs in a web page are a set. I'll read each web page and build
up the set of URLs in each using set insertion. Then I can get the URLs
common to both web pages by using set intersection.

Either approach will work, but the second is conceptually simpler, and it will
probably be more straightforward to implement. In fact, once the problem is
described in mathematical terms, most of the design work is already done.

That's the kind of thinking that this book promotes.

As a vehicle, I use the programming language Python. It's a clean, modern
language, and it comes with many of the mathematical structures that we will
need: strings, sets, several kinds of sequences, finite mappings (dictionaries,
which are more general than arrays), and functions that are first-class values.
All these are built into the core of the language, not add-ons implemented by
libraries as in many programming languages. Python is easy to get started
with and makes a good first language, far better than C or C++ or Java, in
my opinion. In short, Python is a good language for Getting Things Done with
a minimum of fuss. I use it frequently in my own work, and many readers will
find it sufficient for much or all of their own programming.

Mathematically, I start at a rather elementary level: the book assumes no
mathematical background beyond algebra and logarithms. In a few places I
use examples from elementary calculus, but a reader who has not studied
calculus can skip these examples. I don't assume a previous course in discrete
mathematics; I introduce concepts from discrete mathematics as I go along.
Some of these are simple but powerful concepts that (unfortunately) some
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programmers never learn, and we'll see how to use them to create simple and
elegant solutions to programming problems.

For example, one recurring theme in the book is the concept of a monoid. It
turns out that monoids (more than, for example, groups and semigroups) are
ubiquitous in the data types and data structures that programmers use most
often. I emphasize the extent to which all monoids behave alike and how
concepts and algorithms can be transferred from one to another.

I recommend this book for use in a first university-level course, or even an
advanced high-school course, for mathematically-oriented students who have
had some exposure to computers and programming. For students with no
such exposure, the book could be supplemented by an introductory
programming textbook, using either Python or another programming language,
or by additional lecture material or tutorials presenting techniques of
programming. Or the book could be used in a second course that is preceded
by an introductory programming course of the usual kind.

Otherwise, the ideal reader is someone who has had at least some experience
with programming, using either Python or another programming language.
In fact, I hope that some of my readers will be quite experienced programmers
who may never have been through a modern, mathematically-oriented program
of study in computer science. If you are such a person, you'll see many ideas
that will probably be new to you and that will probably improve your
programming.

At the end of most chapters is a set of exercises. Instructors can use these
exercises in laboratory sessions or as homework exercises, and some can be
used as starting points for class discussions. Many instructors will want to
supplement these exercises with their own extended programming assignments.

In a number of places I introduce a topic and then say something like “…
details are beyond the scope of this book.” The book could easily expand to
encompass most of the computer science curriculum, and I had to draw the
line somewhere. I hope that many readers, especially students, will pursue
some of these topics further, perhaps with the aid of their instructors or in
later programming and computer science classes. Some of the topics are
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exception handling, parallel computing, distributed computing, various
advanced data structures and algorithms, object-oriented programming, and
state machines.

Similarly, I could have included many more topics in discrete mathematics
than I did, but I had to draw the line somewhere. Some computer scientists
and mathematicians may well disagree with my choices, but I have tried to
include topics that have the most relevance to day-to-day programming. If
you are a computer science student, you will probably go on to study discrete
mathematics in more detail, and I hope that the material in this book will
show you how the mathematics is relevant to your programming work and
motivate you to take your discrete-mathematics classes more seriously.

This book is not designed to be a complete textbook or reference manual for
the Python language. The book will introduce many Python constructs, and
I'll describe them in enough detail that a reader unfamiliar with Python should
be able to understand what's going on. However, I won't attempt to define
these constructs in all their detail or to describe everything that a programmer
can do with them. I'll omit some features of Python entirely: they are more
advanced than we'll need or are otherwise outside the scope of this book.
Here are a few of them:

• some types, such as complex and byte

• some operators and many of the built-in functions and methods

• string formatting and many details of input and output

• the extensive standard library and the many other libraries that are
commonly available

• some statement types, including break and continue, and else-clauses in
while-statements and for-statements

• many variations on function parameters and arguments, including default
values and keyword parameters

• exceptions and exception handling
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• almost all “special” attributes and methods (those whose names start and
end with a double underbar) that expose internal details of objects

• many variations on class definitions, including multiple inheritance and
decorators

Any programmer who uses Python extensively should learn about all of these
features of the language. I recommend that such a person peruse a
comprehensive Python textbook or reference manual.2

In any case, there is more to Python than I present in this book. So whenever
you think to yourself, “I see I can do x with Python — can I do y too?”, maybe
you can. Again, you can find out in a Python textbook or reference manual.

This book will describe the most modern form of Python, called Python 3. It
may be that the version of Python that you have on your computer is a version
of Python 2, such as Python 2.3 or 2.7. There are only a few differences that
you may see as you use the features of Python mentioned in this book. Here
are the most important differences (for our purposes) between Python 3 and
Python 2.7, the final and most mature version of Python 2:

• In Python 2, print is a statement type and not a function. A print statement
can contain syntax not shown in the examples in this book; however, the
syntax used in the examples — print(e) where e is a single expression —
works in both Python 2 and Python 3.

• Python 2 has a separate “long integer” type that is unbounded in size.
Conversion between plain integers and long integers (when necessary) is
largely invisible to the programmer, but long integers are (by default)
displayed with an “L” at the end. In Python 3, all integers are of the same
type, unbounded in size.

• Integer division produces an integer result in Python 2, not a floating-point
result as in Python 3.

2 As of the time of writing, comprehensive Python documentation, including the official reference
manual, can be found at http://docs.python.org.
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• In Python 2, characters in a string are ASCII and not Unicode by default;
there is a separate Unicode type.

Versions of Python earlier than 2.7 have more incompatibilities than these:
check the documentation for the version you use.

In the chapters that follow I usually use the author's “we” for a first-person
pronoun, but I say “I” when I am expressing my personal opinion, speaking
of my own experiences, and so on. And I follow this British punctuation
convention: punctuation is placed inside quotation marks only if it is part of
what is being quoted. Besides being more logical (in my opinion), this treatment
avoids ambiguity. For example, here's how many American style guides tell
you to punctuate:

To add one to i, you would write “i = i + 1.”

Is the “.” part of what you would write, or not? It can make a big difference,
as any programmer knows. There is no ambiguity this way:

To add one to i, you would write “i = i + 1”.

I am grateful to all the friends and colleagues who have given me help,
suggestions, and support in this writing project, most prominently Lisa
Beinhoff, Horst Clausen, Jeff Havlena, Peter Henderson, Daryl Lee, Subhashish
Mazumdar, Angelica Perry, Steve Schaffer, John Shipman, and Steve Simpson.

Finally, I am pleased to acknowledge my debt to a classic textbook: Structure
and Interpretation of Computer Programs (SICP) by Abelson and Sussman.3

I have borrowed a few ideas from it: in particular, for my treatments of higher-
order functions and streams. And I have tried to make my book a showcase
for Python much as SICP was a showcase for the Scheme language. Most
important, I have used SICP as an inspiration, a splendid example of how
programming can be taught when educators take programming seriously.

3 Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and Interpretation of Computer
Programs (Cambridge, Mass.: The MIT Press, 1985).
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Chapter 1
Introduction
1.1. Programs, data, and mathematical objects

A master programmer learns to think of programs and data at many levels of
detail at different times. Sometimes the appropriate level is bits and bytes and
machine words and machine instructions. Often, though, it is far more
productive to think and work with higher-level data objects and higher-level
program constructs.

Ultimately, at the lowest level, the program code that runs on our computers
is patterns of bits in machine words. In the early days of computing, all
programmers had to work with these machine-level instructions all the time.
Now almost all programmers, almost all the time, use higher-level
programming languages and are far more productive as a result.

Similarly, at the lowest level all data in computers is represented by bits
packaged into bytes and words. Most beginning programmers learn about
these representations, and they should. But they should also learn when to
rise above machine-level representations and think in terms of higher-level
data objects.

The thesis of this book is that, very often, mathematical objects are exactly
the higher-level data objects we want. Some of these mathematical objects are
numbers, but many — the objects of discrete mathematics — are quite different,
as we will see.

So this book will present programming as done at a high level and with a
mathematical slant. Here's how we will view programs and data:

Programs will be text, in a form (which we call “syntax”) that does not look
much like sequences of machine instructions. On the contrary, our programs
will be in a higher-level programming language, whose syntax is designed for
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writing, reading, and understanding by humans. We will not be much
concerned with the correspondence between programming-language constructs
and machine instructions.

The data in our programs will reside in a computer's main storage (which we
often metaphorically call “memory”) that may look like a long sequence of
machine words, but most of the time we will not be concerned with exactly
how our data objects are represented there; the data objects will look like
mathematical objects from our point of view. We assume that the main storage
is quite large, usually large enough for all the data we might want to put into
it, although not infinite in size.

We will assume that what looks simple in a program is also reasonably simple
at the level of bits and bytes and machine instructions. There will be a
straightforward correspondence between the two levels; a computer science
student or master programmer will learn how to construct implementations
of the higher-level constructs from low-level components, but from other
books than this one. We will play fair; we will not present any program
construct that hides lengthy computations or a mass of complexity in its low-
level implementation. Thus we will be able to make occasional statements
about program efficiency that may not be very specific, but that will at least
be meaningful. And you can be assured that the programming techniques that
we present will be reasonable to use in practical programs.

The language of science is mathematics; many scientists, going back to Galileo,
have said so. Equally, the language of computing is mathematics. Computer
science education teaches why and how this is so, and helps students gain
some fluency in the aspects of this language that are most relevant to them.
The current book takes a few steps in these directions by introducing some
of the concepts of discrete mathematics, by showing how useful they can be
in programming, and by encouraging programmers to think mathematically
as they do their work.

2
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1.2. A first look at Python
For the examples in this book, we'll use a particular programming language,
called Python. I chose Python for several reasons. It's a language that's in
common use today for producing many different kinds of software. It's
available for most computers that you're likely to use. And it's a clean and
well-designed language: for the most part, the way you express things in Python
is straightforward, with a minimum of extraneous words and punctuation. I
think you're going to enjoy using Python.

Python falls into several categories of programming language that you might
hear programmers talk about:

• It's a scripting language. This term doesn't have a precise definition, but
generally it means a language that lends itself to writing little programs
called scripts, perhaps using the kinds of commands that you might type
into a command-line window on a typical computer system. For example,
some scripts are programs that someone writes on the spur of the moment
to do simple manipulations on files or to extract data from them. Some
scripts control other programs, and system administrators often use scripting
languages to combine different functions of a computer's operating system
to perform a task. We'll see examples of Python scripts shortly. (Other
scripting languages that you might encounter are Perl and Ruby.)

• It's an object-oriented language. Object orientation is a very important
concept in programming languages. It's a rather complex concept, though,
so we'll wait to discuss it until Chapter 11. For now, let's just say that if
you're going to be working on a programming project of any size, you'll
need to know about object-oriented programming and you'll probably be
using it. (Other object-oriented languages are Java and C++.)

• It's a very high-level language, or at least it has been called that. This is
another concept that doesn't have a precise definition, but in the case of
Python it means that mathematical objects are built into the core of the
language, more so than in most other programming languages. Furthermore,
in many cases we'll be able to work with these objects in notation that
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resembles mathematical notation. We'll be exploiting these aspects of Python
throughout the book.

Depending on how you use it, Python can be a language of any of these kinds
or all of them at once.

Let's look at a few simple Python programs, to give you some idea of what
Python looks like.

The first program is the kind of very short script that a Python programmer
might write to use just once and then discard. Let's say that you have just
attended a lecture, and you met someone named John, but you can't remember
his last name. Fortunately, the lecturer has a file of the names of all the
attendees and has made that file available to you. Let's say that you have put
that file on your computer and called it “names”. There are several hundred
names in the file, so you'd like to have the computer do the searching for you.
Example 1.1 shows a Python script that will display all the lines of the file
that start with the letters “John”.

Example 1.1. Finding a name
file = open("names")
for line in file:

if line.startswith("John"):
print(line)

You may be able to guess (and guess correctly) what most of the parts of this
script do, especially if you have done any programming in another
programming language, but I'll explain the script a line at a time. Let's not
bother with the fine points, such as what the different punctuation marks
mean in Python; you'll learn all that later. For now, I'll just explain each line
in very general terms.

file = open("names")

4
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This line performs an operation called “opening” a file on our computer. It's
a rather complicated sequence of operations, but the general idea is this: get
a file named “names” from our computer's file system and make it available
for our program to read from. We give the name file to the result.

Here and in the other examples in this book, we won't worry about what
might happen if the open operation fails: for example, if there is no file with
the given name, or if the file can't be read for some reason. Serious Python
programmers need to learn about the features of Python that are used for
handling situations like these, and need to include code for handling
exceptional situations in most programs that do serious work.1 In a simple
one-time script like this one, though, a Python programmer probably wouldn't
bother. In any case, we'll omit all such code in our examples, simply because
that code would only distract from the points that we are trying to make.

for line in file:

This means, “For each line in file, do what comes next.” More precisely, it
means this: take each line of file, one at a time. Each time, give that line the
name line, and then do the lines of the program that come next, the lines that
are indented.

if line.startswith("John"):

This means what it appears to mean: if line starts with the letters “John”, do
what comes next.

print(line)

Since the line of the file starts with “John”, it's one that we want to see, and
this is what displays the line. On most computers, we can run the program in
a window on our computer's screen, and print will display its results in that
window.

1The term for such code is “exception handling”, in case you want to look up the topic in Python
documentation. Handling exceptions properly can be complicated, sometimes involving difficult design
decisions, which is why we choose to treat the topic as beyond the scope of the current book.

5
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If you run the program, here's what you might see (depending, of course, on
what is in the file names).

John Atencio

John Atkins

Johnson Cummings

John Davis

John Hammerstein

And so on. This is pretty much as you might expect, although there may be
a couple of surprises here. Why is this output double-spaced? Well, it turns
out that each line of the file ends with a “new line” character, and the print

operation adds another. (As you learn more details of Python, you'll probably
learn how to make output like this come out single-spaced if that's what you'd
prefer.) And why is there one person here with the first name “Johnson”
instead of “John”? That shouldn't be a surprise, since our simple little program
doesn't really find first names in a line: it just looks for lines in which the first
four letters are “John”. Anyway, this output is probably good enough for a
script that you're only going to use once, especially if it reminds you that the
person you were thinking of is John Davis.

Now let's say that you'd like to get in touch with John Davis. Your luck
continues: the lecturer has provided another file containing the names and
email addresses of all the attendees. Each line of the file contains a person's
name and that person's email address, separated by a comma.

Suppose you transfer that file to your computer and give it the name “emails”.
Then Example 1.2 shows a Python script that will find and display John
Davis's email address if it's in the file.

6
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Example 1.2. Finding an email address
file = open("emails")
for line in file:

name, email = line.split(",")
if name == "John Davis":

print(email)

Let's look at this program a line or two at a time.

file = open("emails")
for line in file:

These lines are very much like the first two lines of the previous program; the
only difference is the name of the file in the first line. In fact, this pattern of
code is common in programs that read a file and do something with every line
of it.

name, email = line.split(",")

The part line.split(",") splits line into two pieces at the comma. The result
is two things: the piece before the comma and the piece after the comma. We
give the names “name” and “email” to those two things.

if name == "John Davis":

This says: if name equals (in other words, is the same as) “John Davis”, do
what comes next. Python uses “==”, two adjacent equals-signs, for this kind
of comparison. You might think that just a single equals-sign would mean
“equals”, but Python uses “=” to associate a name with a thing, as we have
seen. So, to avoid any possible ambiguity, Python uses a different symbol for
comparing two things for equality.

print(email)

This displays the result that we want.

As our final example, let's take a very simple computational task: finding the
average of a collection of numbers. They might be a scientist's measurements

7
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of flows in a stream, or the balances in a person's checking account on different
days, or the weights of different boxes of corn flakes. It doesn't matter what
they mean: for purposes of our computation, they are just numbers.

Let's say, for the sake of the example, that they are temperatures. You have
a thermometer outside your window, and you read it at the same time each
day for a month. You record each temperature to the nearest degree, so all
your observations are whole numbers (the mathematical term for these is
“integers”). You put the numbers into a file on your computer, perhaps using
a text-editing or word-processing program; let's say that the name of the file
is “observations”. At the end of the month, you want to calculate the average
temperature for the month.

Example 1.3 shows a Python program that will do that computation. It's a
little longer than the previous two programs, but it's still short and simple
enough that we might call it a “script”.

Example 1.3. Average of a collection of observations
sum = 0
count = 0

file = open("observations")
for line in file:

n = int(line)
sum += n
count += 1

print(sum/count)

Let's look at this program a line or two at a time.

sum = 0
count = 0

To compute the average of the numbers in the file, we need to find the sum
of all the numbers and also count how many there are. Here we give the names

8
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sum and count to those two values. We start both the sum and the count at
zero.

file = open("observations")
for line in file:

As in the previous two programs, these lines say: open the file that we want
and then, for each line of the file, do what comes next. Specifically, do the
lines that are indented, the next three lines.

n = int(line)

A line of a file is simply a sequence of characters. In this case, it will be a
sequence of digits. The program needs to convert that into a single thing, a
number. That's what int does: it converts the sequence of digits into an integer.
We give the name n to the result.

sum += n
count += 1

In Python, “+=” means “add the thing on the right to the thing on the left”.
So, “sum += n” means “add n to sum” and “count += 1” means “add 1 to
count”. This is the obvious way to accumulate the running sum and the running
count of the numbers that the program has seen so far.

print(sum/count)

This step is done after all the numbers in the file have been summed and
counted. It displays the result of the computation: the average of the numbers,
which is sum divided by count.

Notice, by the way, that we've used blank lines to divide the lines of the
program into logical groups. You can do this in Python, and programmers
often do. This doesn't affect what the program does, but it might make the
program a little easier for a person to read and understand.

So now you've seen three very short and simple Python programs. They aren't
entirely typical of Python programs, though, because they illustrate only a
few of the most basic parts of the Python language. Python has many more

9
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features, and you'll learn about many of them in the remaining chapters of
this book. But these programs are enough examples of Python for now.

1.3. A little mathematical terminology
Now we'll introduce a few mathematical terms that we'll use throughout the
book. We won't actually be doing much mathematics, in the sense of deriving
formulas or proving theorems; but, in keeping with the theme of the book,
we'll constantly use mathematical terminology as a vocabulary for talking
about programs and the computational problems that we solve with them.

The first term is set. A set is just an unordered collection of different things.

For example, we can speak of the set of all the people in a room, or the set of
all the books that you have read this year, or the set of different items that
are for sale in a particular shop.

The next term is sequence. A sequence is simply an ordered collection of things.

For example, we can speak of the sequence of digits in your telephone number
or the sequence of letters in your surname. Unlike a set, a sequence doesn't
have the property that all the things in it are necessarily different. For example,
many telephone numbers contain some digit more than once.

You may have heard the word “set” used in a mathematical context, or you
may know the word just from its ordinary English usage. It may seem strange
to call the word “sequence” a mathematical term, but it turns out that
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sequences have some mathematical properties that we'll want to be aware of.
For now, just notice the differences between the concepts “set” and “sequence”.

Let's try applying these mathematical concepts to the sample Python programs
that we've just seen. In each of them, what kind of mathematical object is the
data that the program operates on?

First, notice that each program operates on a file. A file, at least as a Python
program sees it, is a sequence of lines. Code like this is very common in Python
programs that read files a line at a time:

file = open("observations")
for line in file:

In general, the Python construct

for element in sequence :

is the Python way to do something with every element of a sequence, one
element at a time.

Furthermore, each line of a file is a sequence of characters, as we have already
observed. So we can describe a file as a sequence of sequences.

But let's look deeper.

Let's take the file of names in our first example (Example 1.1). In terms of the
information that we want to get from it, the file is a collection of names. What
kind of collection? We don't care about the order of names in it; we just want
to see all the names that start with “John”. So, assuming that our lecturer
hasn't included any name twice by mistake, the collection is a set as far as
we're concerned.

In fact, both the input and the output of this program are sets. The input is
the set of names of people who attended the lecture. The output is the set of
members of that input set that start with the letters “John”. In mathematical
terminology, the output set is a subset of the input set.
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Notice that the names in the input may actually have some ordering; the point
is that we don't care what the ordering is. For example, the names may be in
alphabetical order by surname; we might guess that from the sample of the
output that we have seen. And of course the names have an ordering imposed
on them simply from being stored as a sequence of lines in a file. The point
is that any such ordering is irrelevant to the problem at hand and what we
intend to do with the collection of names.

What about the file of names and email addresses in the second example
(Example 1.2)? First, let's consider the lines of that file individually. Each line
contains a name and an email address. In mathematical terminology, that data
is an ordered pair.

The two elements are “ordered” in the sense that it makes a difference which
is first and which is second. In this case, it makes a difference because the two
elements mean two different things. An ordered pair is not the same as a set
of two things.

Now what about the file as a whole? Like the input file for the first program,
it is a set. We don't care whether the file is ordered by name or by email
address, or not ordered at all; we just want to find an ordered pair in which
the first element is “John Davis” and display the corresponding second element.
So (again assuming that the file doesn't contain any duplicate lines) we can
view the input data as a set of ordered pairs.
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There's another mathematical name for a set of ordered pairs: a relation. We
can view a set of ordered pairs as a mathematical structure that relates pairs
of things with each other.

In the current program, our input data relates names with corresponding email
addresses.

One particular kind of relation will be very important to us: the mapping.
This is a set of ordered pairs in which no two first elements are the same. We
can think of a mapping as a structure that's like a mechanism for looking
things up: give it a value (such as a name) and, if that value occurs as a first
element in the mapping, you get back a second element (such as an email
address).

In mathematics, another word for “mapping” is “function”; you probably
know about mathematical functions like the square-root and trigonometric
functions. The word “function” has other connotations in programming,
though, so we'll usually use the word “mapping” for the mathematical concept.

We don't know whether the input data for this program is a mapping. Some
attendees may have given the lecturer more than one email address, and the
lecturer may have included them all in the file. In that case, the data may
contain more than one ordered pair for some names, and so the data is a
relation but not a mapping. But if the lecturer took only one email address
per person, the data is not only a relation but a mapping. We may not care
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about the distinction in this case: if our program displays more than one email
address for John Davis, that's probably OK.

Now what about the input data in our third example, the program that
computes an average (Example 1.3)? When you add up a group of numbers
to average them, the order of the numbers and the order of the additions don't
matter. This fact follows from two fundamental properties of integer addition:

• The associative property: (a + b) + c = a + (b + c) for any integers a, b, and
c

• The commutative property: a + b = b + a for any integers a and b

So is this data a set, like the input data for our first two programs? Not quite.
The difference is that the same number may appear in the input data more
than once, because the temperature outside your window may be the same
(to the nearest degree) on two different days.

This data is a multiset. This is a mathematical term for a collection that is like
a set, except that its elements are not necessarily all different: any element
may occur in the multiset more than once. But a multiset, like a set, is an
unordered collection.

So, if our task is to compute the average of our collection of observations, the
term “multiset” is an accurate description of that collection. But suppose we
wanted to plot our observations to show the trend of the temperatures over
the month, as in Figure 1.1?
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Figure 1.1. Temperatures over a month, with trend line

Then the order of the observations would be important, so we would view
the data as a sequence. The point here is that what kind of mathematical object
a collection of data is, from a programmer's point of view, depends not only
on properties of the data but also on what the programmer wants to do with
the data.

Let's summarize. Here are the kinds of mathematical objects that we've
mentioned so far:

• set

• multiset

• sequence

• ordered pair

• relation

• mapping
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And here are the instances of these mathematical objects that we've observed
in our examples:

• A generic file: a sequence of sequences.

• The data for our first script (names, Example 1.1): a set.

• The data for our second script (emails, Example 1.2): a set of ordered pairs,
forming a relation, possibly a mapping.

• The data for our third script (average of observations, Example 1.3): a
multiset. But if we want to use the same data to plot a trend, a sequence.

In later chapters we'll explore properties of these and other mathematical
objects and their connections with the data and computations of programs.
Meanwhile, let's conclude the chapter with two simple observations:

• A collection of data, as a programmer views it, is likely to be a set, or a
sequence, or a mapping, or some other well-known mathematical object.

• You can often view a collection of data as more than one kind of
mathematical object, depending on what you want to do with the data.

Terms introduced in this chapter
mappingscript
associative propertyset
commutative propertysequence
multisetordered pair

relation
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Chapter 2
An overview of Python
2.1. Introduction

In this chapter and the two chapters that follow we'll give an overview of the
Python language, enough (we hope) for you to understand the Python examples
in the rest of the book. Along the way, we'll introduce terms for many Python
concepts. Most of these terms are not specific to Python, but are part of the
common language for speaking about programming languages in the computer
science community. We'll use these terms in many places later in the book;
so, even if you already know Python, you might want to skim through the
chapters just to make sure that you are familiar with all the terms.

You have seen examples of Python programs that take their input data from
files. In fact, Python programs themselves are made of text in files. If you had
the scripts of the previous chapter on your computer, each would be in a file
of its own.

On most computer systems, you can also use the Python interpreter
interactively. You can type small bits of Python to the interpreter, and it will
display the results. For example, you can use the interpreter as a calculator.
You can type

3 + 2

and the interpreter will display

5

If you have your computer handy as you are reading this book, you might
like to experiment with the Python constructs that you are reading about. Go
ahead and type pieces of Python to the interpreter and see what happens. Feel
free to do this at any time as you read.

17



2.2. Values, types, and names
We'll start by explaining some very basic concepts of Python; you might think
of these as defining how to think about computation in the Python world.

Computation in Python is done with values. Computations operate on values
and produce other values as results. When you type “3 + 2” to the Python
interpreter, Python takes the values 3 and 2, performs the operation of addition
on them, and produces the value 5 as a result.

We have seen a few kinds of values already. The numbers 3 and 2 are values.
So are sequences of characters like “John”. So are more complicated things
like the opened files that the scripts of Chapter 1 used. As we'll see in later
chapters, Python values also include other kinds of sequences, as well as sets
and mappings and many other kinds of things.

Every value has a type. The type of whole numbers like 3 and 2 is “integer”.
The type of a sequence of characters is “string”. There are other types in
Python, and we'll see many of them later in the book.

A type is more than just a Python technical term for a kind of value. A type
has two important properties, besides its name: a set of possible values, and
the set of operations that you can do with those values. In Python, one of the
operations on integers is addition, and one of the operations on strings is
splitting at a given character.

Finally, names are central to Python programming, and they are used in many
ways. One important example is this: we can bind a name to a value. That's
what happened when we did this in our script that computed an average:

count = 0

This binds the name count to the value 0. Another name for the operation in
this example is assignment: we say that we assign 0 to count and if a line like
this occurs in a Python program, the line is called an assignment statement.
There are several ways to bind a name to a value in Python, but the assignment
statement is the most basic way.
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A name that is bound in an assignment statement like this is called a variable.
That's because the binding is not necessarily permanent: the name can be
bound to a different value later. For example, our script for computing an
average has this line farther along:

count += 1

This binds count to a new value, which is one greater than the value that it
was bound to before. A program can do such rebinding many times, and in
fact our averaging script does: once for each line of the file of observations.

In Python you could even do this in the same program, although you probably
wouldn't want to:

count = "Hello, John!"

So even the type of a variable isn't permanent. In Python, a type is a property
of a value. We can speak of the type of a variable, but that's just the type of
the value that happens to be bound to that variable.

However, as Python is actually used in practice, most variables have the same
type throughout a program — that just turns out to be the most natural way
for programmers to use variables. Furthermore, good programmers choose
names that have some logical relationship with the way that the names are
used. Giving a name like count to a string like "Hello, John!" is just silly,
even though the Python interpreter would let you do it.

Saying that an assignment binds a name to a value is actually a slight
oversimplification in Python. What actually happens is that a name is bound
to something called an “object”, and it's the object that has a value. Later in
the book we'll see how the distinction can make a difference. For now, this
fine point isn't important, and we can just think of the name as being bound
directly to the value.

2.3. Integers
Python integers are like mathematical integers: that is, they are the positive
and negative whole numbers and zero.
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Some of the operations that you can do with integers in Python, as you might
expect, are addition, subtraction, multiplication, and division. Each of these
operations is denoted by a symbol that comes between the quantities operated
on, like this:

3 + 2
3 - 2
3 * 2
3 / 2

Each of those symbols is called an operator, and the quantities that they
operate on are called operands. Many operators, like these, operate on two
operands; such operators are called binary operators. (The term “binary”,
when used in this way, doesn't have anything to do with the binary number
system.)

In a Python program, a sequence of one or more digits, like 123 or 2 or 0,
represents a non-negative integer value. The sequence of digits is an example
of a constant: a symbol that can't be bound to anything other than the value
that it represents.

To get a negative integer, we precede a sequence of digits with a minus sign
in the obvious way, like this:

-123

Here, the minus sign is a unary operator, meaning that it takes only one
operand. Notice that - can be either a binary operator or a unary operator,
depending on context.

The combination of an operator and its operands is called an expression. As
in most programming languages, larger expressions can be built up by
combining smaller expressions with operators, and parentheses can be used
for grouping. We speak of evaluating an expression: this means finding the
values of all its parts and performing all the operations to obtain a value.

If the operands of the +, -, and * operators are integers, the result is also an
integer. The operator / is different: for example, the result of evaluating the
expression 3 / 2 is 1.5 just as in mathematics. But that 1.5 is not an integer,
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of course, because it has a fractional part. It's an example of a floating-point
number; we'll explain numbers of that type in the next section.

In Python, the result of dividing two integers with the / operator is always a
floating-point number, whether the division comes out even or not. There's
another division operator that always gives an integer result: it is //. So, for
example, the value of 4 / 2 is the floating-point number 2.0, but the value of
4 // 2 is 2, an integer. If the result of // does not come out even, it is rounded
down, so that the value of 14 // 3 is the integer 4, with no fractional part;
the remainder, 2, is dropped.

The operator % gives the remainder that would be left after a division. The
value of 14 % 3 is 2, for example.

Python has other integer operators. Here's one more: ** is the exponentiation
operator. For example, 2 ** 8 means 28.

Python also has operators that combine arithmetic and assignment: these are
called augmented assignment operators. We have already seen one of these,
the += operator, in this augmented-assignment statement:

count += 1

In evaluating this statement, the Python interpreter does the + operation in
the usual way and then binds the left operand to the result. Python also has
-= and *= and so on, but the += operator is probably the one that programmers
use most often.

In Python, there is no intrinsic limit on the size of an integer. The result of
evaluating the expression 2**2**8 is a rather large number, but it's a perfectly
good integer in Python, and Python integers can be much larger than that one.

However, there are practical limits to the size of a Python integer. You can't
evaluate the expression 2**2**100 using the Python interpreter. That value
would contain far more digits than your computer can store, and even if the
Python interpreter could find somewhere to put all the digits, evaluating the
expression would take an enormously long time.

21

Integers



In mathematics, 22100
is a perfectly good number. It's a finite number, and it

isn't hard to denote finite numbers that are much larger than that one: think
of raising 2 to that power, for example. In mathematics there are also ways
of making sense of infinite numbers, and mathematics draws a distinction
between all finite numbers and the infinite numbers.1

Unlike many programming languages, Python has a way of representing
“infinity”, as we'll see in the next section. There is only one infinite number
(and its negative) in Python, and the Python “infinity” has rather limited
usefulness in Python programs, but it does exist.

In Python programming, and in all programming for that matter, it's important
to recognize a third category of numbers, besides finite and infinite: numbers
that are finite but that are far too large to compute with in practice, such as
22100

.

As we'll see in later chapters, sets can be represented as Python values, and
so can sequences, mappings, and other mathematical structures. As with
integers, the Python values are similar to the mathematical objects; Python
was designed so that they would be. That's good, because we can use
mathematical thinking to describe and understand those values and the
operations on them. But, as with integers, Python sets and sequences and the
rest have practical limitations. For example, a Python programmer must avoid
computations that would try to construct sets that are far too large to store
or operate on.

So, whereas in mathematics there's a distinction between finite and infinite,
in programming there's also a distinction between finite and finite-but-far-
too-large. The distinction applies to computations too: there are many
computational problems that can't be solved in practice because the
computations would take far too long. Drawing a line between practical and
impractical, and categorizing values and computations according to which
side of the line they are on, are central issues in the field of computer science,
as you will see later in your studies if you are a computer science student.

1Yes, in mathematics there are different infinite numbers. For example, the number of points on a line
is greater than the number of integers: infinitely greater, in fact.
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2.4. Floating-point numbers
In Python, the floating-point numbers are another type, whose name is "float".
Python uses floating-point numbers to represent numbers with a fractional
part, and produces them in computations that may not come out even, like
division of two integers using the / operator. As Python integers represent
mathematical integers, Python floating-point numbers represent the real
numbers of mathematics. Floating-point numbers are only an approximate
representation of the real numbers, though; they differ from mathematical
real numbers in some important ways, as we will see.

Python has two kinds of floating-point constants. The first is simply a sequence
of digits with a decimal point somewhere in it; 3.14 and .001 are examples.
The second is a version of “scientific notation”: the number 6.02 × 1023 can
be written in Python as 6.02E23. The number after the “E” (you can also use
“e”) is the power (“exponent”) of ten used in the scientific notation; it can
be negative, as in 1e-6, which represents one millionth.

Floating-point arithmetic in Python is much like integer arithmetic, except
that if the operands in an expression are floating-point, so is the result.
Floating-points and integers can be mixed in an expression: if one operand of
a binary operator is a floating-point and the other is an integer, the integer is
converted to a floating-point value and then the operation is done, giving a
floating-point value.

To convert explicitly from an integer to a floating-point number or vice versa,
we can use a Python function. As we'll see in later chapters, Python functions
can behave in several different ways, but the kind that we'll consider now is
like a mathematical function. It's a mapping: it takes a value, called an
argument, and produces another value as a function of the argument.

To use a function, we write a function call, which is another kind of expression
besides those that we have seen. In the form that we'll consider now, a function
call consists of the name of a function, followed by an expression in
parentheses; that expression is the argument. When the Python interpreter
evaluates a function call, we say that it calls the function, passing the argument
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to the function. The function returns a value, which becomes the value of the
function call expression.

To convert an integer value to floating-point, we can use the float function.
For example, if the variable n has the value 3, then float(n) has 3.0 as a value.
To convert from floating-point to integer, we can use the int function if we
just want to truncate the fractional part, or the round function if we want to
round to the nearest integer. For example, if the variable x has the value 2.7,
the value of int(x) is 2 and the value of round(x) is 3.

We can also use float to create a Python representation of “infinity”. Python
has no constant that represents “infinity”, but we can create the Python value
that represents “infinity” by writing float("inf") or float("Infinity") (the
string passed to float can have any combination of upper-case and lower-case
letters). We can get the negative infinity by writing float("-inf") or
-float("Infinity") or similar expressions.

Probably the most useful property of the Python “infinity” is that it is a
floating-point number that is greater than any other floating-point number
and greater than any integer. Similarly, the Python “negative infinity” is a
floating-point number that is less than any other floating-point number and
less than any integer. Except for showing a few applications of those properties,
we won't say much more about Python's positive and negative infinity in this
book.

Floating-point numbers (except for positive and negative infinity) are stored
in the computer using a representation that is much like scientific notation:
with a sign, an exponent, and some number of significant digits. On most
computers, Python uses the “double precision” representation provided by
the hardware.

For our purposes here, the exact representation isn't important, except for
one point: both the exponent and the significant digits are represented using
a fixed number of bits. An interesting consequence of this is that only finitely
many floating-point numbers are representable on any given computer. In
fact, in Python there are many more integers than floating-point numbers!
This is the opposite of the situation in mathematics.
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Notice that there must be a limit to the magnitude of a floating-point number,
since there's an upper bound to the value of the exponent. This limitation
usually isn't serious in practice, though, since on modern computers a floating-
point number can easily be large enough for almost all common uses, such as
representing measurements in the physical universe.

A more important limitation is that a floating-point number contains only a
limited number of significant digits. This means that most of the mathematical
real numbers can be represented only approximately with floating-point
numbers. It also means that the result of any computation that produces a
floating-point result, such as evaluating the expression 1/3, will be truncated
or rounded to a fixed number of significant digits, giving only an
approximation to the true mathematical value in most cases.

Thus, we must be careful when we compute with floating-point numbers,
keeping in mind that they are only approximations. For example, we can't
assume that the value of 1/3 + 1/3 + 1/3 is exactly equal to 1.0; we can only
assume that the two values are approximately equal. The difference between
a floating-point result and the true mathematical value is called roundoff error;
in some situations, especially in long computations, roundoff error can build
up and cause computations to be unacceptably inaccurate.

2.5. Strings
As we have already mentioned, sequences of characters are called strings. In
Python, a string can contain not only the characters available on your
keyboard, but all the characters of the character set called “Unicode”. Unicode
contains characters from most of the world's written languages, including
Chinese, Arabic, Hindi, and Cherokee, to name just a few. Unicode also
contains mathematical symbols, technical symbols, unusual punctuation marks,
and many more characters. For our purposes in this book, though, the
characters on your keyboard will be enough.

A string constant is any sequence of characters enclosed in double-quote
characters, as in

"Here's one"
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or single-quote characters, as in

'His name is "John"'

Notice how a string delimited by double-quote characters can contain single-
quote characters and vice versa.

The sequence of characters in a string may be empty, as in ""; this string is
called the empty string or the “null string”. Yes, the empty string does have
uses, as we will see.

Python has no “character” type; it treats a single character as the same as a
one-character string.

There is a function to convert from other types, such as integers and floating-
point numbers, to strings: its name is str. For example, str(3) produces the
string value "3".

One important operation on strings is concatenation, meaning joining together
end-to-end. Python uses the + operator for concatenation. For example, the
value of the expression "python" + "interpreter" is

"pythoninterpreter"

So Python gives the + operator three different meanings that we've seen so
far: integer addition, floating-point addition, and string concatenation. We
say that + is overloaded with these three meanings.

Python also overloads * to give it a meaning when one operand is a string and
the other is an integer: this means concatenating together a number of copies.
For example, the value of 3 * "Hello" is "HelloHelloHello". The integer can
be either the left or the right operand. But Python doesn't overload + or * for
any imaginable combination of types. For example, Python doesn't allow +

of a string and an integer. You might guess that the Python interpreter would
convert the integer to a string and do concatenation, but it won't.
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Terms introduced in this chapter
evaluatingtype
floating-pointname
augmented assignmentbinding
functionassignment
argumentassignment statement
function callvariable
calling a functioninteger
passing an argumentoperator
returnoperand
empty stringbinary operator
concatenationconstant
overloadingunary operator

expression

Exercises
1. We said that 228

was a perfectly good Python value but that 22100
was far

too large. For expressions of the form 2**2**n, what values of n make the
value of the expression too large to compute in practice? Experiment with
your Python interpreter. Start with small values of n and then try larger
values. What happens?

2. What happens if you actually try to evaluate 2**2**100 using your Python
interpreter? Let it run for a long time, if necessary. Can you explain what
you see?

3. Estimate how many decimal digits it would take to write out 22100
. Hint:

logarithms. You can use your computer, if that will help.

4. The value of a comparison like 1.0 == 1 is either True or False. Experiment
with your Python interpreter: you will probably get True for the value of
1.0 == 1, for example. Try 1/3 + 1/3 + 1/3 == 1.0; you may get True or
False, depending on how the rounding is done on your computer. Try to
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find some comparisons that should give True according to mathematical
real-number arithmetic, but that give you False in Python on your computer.

5. Does concatenation of strings have the associative property, as addition of
integers does? Does concatenation of strings have the commutative property?

6. Make an improvement to the script that reads a file and finds lines that
begin with “John”. Change it so that it actually compares the first name
on each line with the name “John”, so that (for example) it doesn't display
lines starting with “Johnson”. You have already seen enough of Python
that you should be able to guess how to do this. Assume that each line of
the file contains just a first name, a single blank space, and a last name.
Test your solution using the Python interpreter.
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Chapter 3
Python programs
3.1. Statements

Now we'll take the concepts and Python constructs from the last chapter and
see how they can be used in larger Python constructs, up to and including
whole programs.

A Python program is a sequence of statements. To illustrate some of the kinds
of Python statements, let's look again at one of the sample programs from
Section 1.2.

sum = 0
count = 0

file = open("observations")
for line in file:

n = int(line)
sum += n
count += 1

print(sum/count)

This program contains several statements. Some of them are assignment and
augmented-assignment statements; each is on a line of its own.

If a statement is too long to fit on one line, it can be broken across lines by
using the backslash character \ followed by a line break, like this:

z = x**4 + 4 * x**3 * y + 6 * x**2 * y**2 \
+ 4 * x * y**3 + y**4

However, if the line break is inside bracketing characters such as parentheses,
the backslash is not needed:

z = round(x**4 + 4 * x**3 * y + 6 * x**2 * y**2
+ 4 * x * y**3 + y**4)
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The last line of the sample program is also a statement. As it happens, print
is a function in Python. (Here, its argument is a floating-point number, but
in the examples of Section 1.2 we also saw print being used to display strings.
In fact, print is overloaded to work with these and many other Python types.)

An expression in Python, by itself, can be a statement, and the last line of the
program is an example. For the expressions that we have considered until
now, using one as a statement would make no sense; the Python interpreter
would just evaluate it and do nothing with the result. But some expressions
have side effects: evaluating them has some effect besides producing a value.

Some Python functions are designed to be used as statements. They aren't
mappings at all, because they don't produce values; they only cause side effects.
The print function is one of these. Its “side effect”, which is really its only
effect, is to display a value.

Assignment statements, augmented assignment statements, and expression
statements are called simple statements. The line starting with “for” and the
three lines that follow it are an example of a compound statement: a statement
with other statements inside it.

for line in file:
n = int(line)
sum += n
count += 1

The first line of a compound statement is called its header. A header starts
with a keyword that indicates what kind of compound statement it is, and
ends with a colon. Python has a number of keywords that are used for special
purposes like this. As it happens, both for and in are keywords; they are
structural parts of the header. Keywords can't be used as names; you can't
have a variable named “for” or “in”.

The remaining lines of a compound statement, called the body of the statement,
are indented with respect to the header.

As we have already seen, programs can contain blank lines, which are not
statements and have no effect on what the program does, but are strictly for
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the benefit of human readers. Similarly, all serious programming languages
provide for comments, so that a programmer can insert commentary and
explanations into a program. In Python, a comment starts with the character
“#” and continues to the end of the line. Here's the average-of-numbers script
again with some comments added:

# A program to display the average of
# the numbers in the file "observations".
# We assume that the file contains
# whole numbers, one per line.

sum = 0
count = 0

file = open("observations")
for line in file:

n = int(line) # convert digits to an integer
sum += n
count += 1

print(sum/count)

3.2. Conditionals
In a sequence of statements, the Python interpreter normally executes the
statements one after another in the order they appear. We say that the flow
of control passes from one statement to the next in order.

Sometimes the flow of control needs to be different. For example, we often
want certain statements to be executed only under certain conditions. A
construct that causes this to happen is called a conditional.

The basic conditional construct in Python is a compound statement that starts
with the keyword if. We call such a statement an if-statement for short. The
most basic kind of if-statement has this form:

if condition :

statements

Here's an example that we saw in Section 1.2:

31

Conditionals



if name == "John Davis":
print(email)

Most commonly, the condition in an if-statement header is a comparison, as
in the example above. The result of a comparison is a value of the Boolean
type. This type has only two values, True and False, and that's the way
constants of the Boolean type are written. These values behave like the integers
1 and 0 in most contexts — in fact, Python considers them numeric values
and you can do arithmetic with them — but the main use of Boolean values
in Python is to control execution in if-statements (and in the while-statements
that we'll see in the next section).

The comparison operator that means “does not equal”, like “≠” in
mathematics, is written != in Python. The operators < and > mean “is less
than” and “is greater than”, as you might expect. For “is less than or equal
to”, like “≤” in mathematics, Python uses <=, and similarly >= means “≥”.

One more comparison operator is in, which (for example) can be used to test
whether a character is in a string. Here is an example, where c is a variable
containing a character:

if c in "aeiou":
print("c is a vowel")

More generally, if the operands of in are strings, the operator tests whether
the left operand is a substring of the right operand; in other words, whether
the sequence of characters of the left operand occurs as a sequence of characters
in the right operand. We'll see many more uses for the in operator in later
chapters.

Python has operators whose operands are Booleans, too: and, or, and not.
The not operator is unary, and produces False if the value of its operand is
True and True if the value of its operand is False, as you might expect.

The or operator also means what it appears to mean, but Python evaluates it
in a particular way. In evaluating an expression of the form A or B, the Python
interpreter first evaluates A. If its value is True, the value of the whole
expression is True; otherwise, the interpreter evaluates B and uses its value as
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the value of the whole expression. The and operator is evaluated similarly: the
interpreter evaluates the second operand only if the value of the first is False.

So, for the or and and operators, the interpreter doesn't just evaluate both
operands and then do the operation, as it does with most operators. This can
make a difference. Look at this example:

if y != 0 and x/y > 1:

If y is zero, the value of the whole Boolean expression is False, and the Python
interpreter doesn't even evaluate x/y > 1. That's fortunate in this case, because
dividing by zero is undefined in Python just as it is in ordinary arithmetic.

Python if-statements can have other forms, to create other kinds of control
flow that occur commonly in programs. For example, often a program needs
to do one thing if a condition is true and something else if the condition is
false. The Python statement that does so has this form:

if condition :

statements
else:

statements

This is a compound statement with more than one “clause”, each with its
own header and body; the headers are aligned with each other. Here's a simple
example:

if a > b:
print("I'll take a")

else:
print("I'll take b")

To distinguish more than two cases and handle them differently, you can
combine if-statements, as in this example:

33

Conditionals



if testScore > medianScore:
print("Above average."

else:
if testScore == medianScore:

print("Average.")
else:

print("Below average.")

Here we have one if-statement that contains another if-statement. By definition,
a compound statement contains other statements, and these can be compound
statements themselves.

When constructs contain other constructs of the same kind, we say that they
are nested. Expressions are another example since, in an expression that
contains an operator, the operands can be expressions themselves. Nested
constructs appear in many places in programming languages.

The pattern of control flow in the above example is so common that Python
provides a shorter way to do it. An if-statement can contain a clause beginning
with elif, meaning “else if”, between the if-clause and the else-clause:

if condition :

statements
elif condition :

statements
else:

statements

So the example above could be written more concisely like this:

if testScore > medianScore:
print("above average."

elif testScore == medianScore:
print("average.")

else:
print("below average.")

There can be more than one elif-clause, for computations in which there are
more than three cases. The else-clause can be omitted whether or not there
are elif-clauses. Thus, the general form of the if-statement in Python is an if-
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clause, followed optionally by one or more elif-clauses, followed optionally
by an else-clause.

3.3. Iterations
Another pattern of control flow is extremely common in programs: executing
the same section of code many times. We call this iteration.

Some iterations execute a section of code over and over forever, or at least
until the program is interrupted or the computer is shut down. But we'll
concentrate on the kind of iteration that executes a section of code as many
times as necessary, according to the circumstances, and then stops.

Here's an example that we've already seen (Example 1.1):

file = open("names")
for line in file:

if line.startswith("John"):
print(line)

The compound statement starting with the keyword for is a Python iteration
construct, the for-statement. As we have seen, this for-statement repeats its
body as many times as there are lines in file. Since we're emphasizing
mathematical structures throughout this book, iterations like this one — those
that iterate over all elements of a sequence or set or other mathematical
structure — will be especially important to us.

The general form of a for-statement is this:

for name in expression :

statements

The expression provides the values to be iterated over. To give a simple
example, the expression's value can be a string, which is a sequence of
characters, as in the following:
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sentence = "Look at me swimming!"

vowels = 0
for c in sentence:

if c in "aeiou":
vowels += 1

print("There are " + str(vowels)
+ " vowels in that sentence.")

One way or another, the expression in the header must provide a sequence of
values. For each of those values, the Python interpreter binds the name in the
header to the value and then executes the body of the for-statement.

Python for-statements can iterate over many kinds of things. Some of them
are composite values that exist in advance, like strings. Others are sequences
of values that are generated dynamically, one at a time, by objects called
iterators. For example, look at this little program again:

file = open("names")
for line in file:

if line.startswith("John"):
print(line)

Here's what really happens: the value that the function open returns is an
iterator. The for-statement uses the iterator to generate values: on each
repetition, the iterator reads a line of the file and returns it to the for-statement,
which binds that string to line and executes the body of the for-statement.

A “range” object is another kind of value that is useful in iterations. For an
integer value n, a function call range(n) produces a range object that generates
the sequence of integers from 0 to n-1, much as an iterator does, without
having to create the entire sequence in advance. The most common use of
range is in the header of a for-statement, like this:

for i in range(n):

This causes the body of the for-statement to be executed n times, with i taking
on successive values from 0 to n-1, acting as a counter. Here's a simple example
that displays the powers of 2 from 0 to 19:
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for i in range(20):
print("2 to the " + str(i)

+ " power is " + str(2**i))

We'll see many more examples of for-statements in later chapters. Especially,
in the chapters that discuss mathematical structures in more detail, we'll see
many examples of for-statements that iterate over elements of those structures.

Python has one more kind of compound statement for doing iteration: the
while-statement. Its form is as follows:

while condition :

statements

Its meaning is this: the body of the while-statement is executed over and over
until the condition in the header becomes false. Specifically, to execute a while-
statement, the Python interpreter first evaluates the condition. If it is false,
control passes immediately to whatever follows the while-statement. Otherwise,
the interpreter executes the body and then evaluates the condition again, and
so on.

In some ways the while-statement is more basic than the for-statement: any
iteration that can be done with a for-statement can be done with a while-
statement, although not always as easily. Look at this example again:

for i in range(20):
print("2 to the " + str(i)

+ " power is " + str(2**1))

Here's how we can do the same computation using a while-statement:

i = 0
while i < 20:

print("2 to the " + str(i)
+ " power is " + str(2**1))

i += 1

In the for-statement version, the iteration mechanism is all on one line. In the
while-statement version, we need three lines: one to initialize the counter i to
zero, one to increment the counter, and one (the while-statement header) to
test the counter to determine when the iteration is done.
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Here's another situation in which some programmers would use a while-
stament: reading all lines of a file. Python has a function readline for reading
one line of a file at a time. Actually, readline is a particular kind of a function
called a “method”, which we'll discuss later; for now, let's just say that
readline can be used like this:

line = file.readline()

Each time this statement is executed, line is assigned the next line in file, as
a string. When there are no more lines in the file, line is assigned the empty
string.

So, to do some computation on every line of a file, we can use a pattern of
code like this:

line = file.readline()
while line != "":

computation using line
line = file.readline()

Again, we have an initialization step, the first call to readline; a test; and a
step that advances the iteration for the next repetition of the computation,
the second call to readline. But, as we have seen, we can do the job more
easily with a for-statement:

for line in file:
computation using line

So it's usually easier to use a for-statement than a while-statement, whenever
the for-statement is an obvious fit for the computation that needs to be done;
that is, whenever you can identify an obvious sequence or other collection of
values to iterate over. But for some computations there really isn't any.

Here's an example. This piece of program calculates the square root of a
number using an algorithm called “Newton's Method”. We assume that the
number is in the variable n and that it is non-negative; we will calculate a close
approximation to its positive square root and leave that approximation in the
variable root. (The function abs gives the absolute value of an integer or a
floating-point number.)
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guess = 1.0
while abs(n - guess*guess) > .0001:

guess = guess - (guess*guess - n)/(2*guess)
root = guess

If you have studied calculus, you might be able to see how Newton's Method
works here and why guess*guess gets closer and closer to n so that the iteration
eventually terminates. In any case, notice that there's no sequence here, other
than the sequences of values that the variable guess gets on successive
executions of the while-statement body.

Terms introduced in this chapter
conditionalstatement
if-statementside effect
Booleansimple statement
substringcompound statement
nestingheader
iterationbody
for-statementkeyword
iteratorcomment
while-statementflow of control

Exercises
1. Write a program that will display a bar chart based on data from a file.

The file is called “data”, and it contains non-negative integers, one per line.

The output of your program should look like the following (for a file
containing 7, 15 and 11, as an example):

####### 7
############### 15
########### 11

2. Take your solution to the previous exercise and modify it so that it imposes
a maximum length of the bars. If an integer from the file is greater than
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25, your program will display only a bar of length 25. Here's how a bar
chart might look now (with different data):

####### 7
######################### 25
######################### 283
########### 11

3. Now take your solution to the previous exercise and modify it again. If an
integer from the file is greater than 25, your program will display a bar of
length 25, but with an ellipsis ("/ /") in the middle, like this:

####### 7
######################### 25
###########/ /########### 283
########### 11

4. Experiment with the square-root program of Section 3.3. Put a print

expression-statement in the body of the while-statement to display the value
of guess, and see how long it takes the iteration to converge for different
values of n and different initial guesses. What happens if n is a negative
number?

5. The first line of our square-root program is this:

guess = 1.0

What happens if you change it to this?

guess = 1

Try it, and explain what you see.

6. If you have studied calculus, try to explain how the square-root program
works. (Hint: we are solving for x in the equation x2 = n; that is, x2 - n =
0, where n is a constant. The derivative of x2 - n is 2x. Draw a picture.)
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Chapter 4
Python functions
4.1. Function definitions

In this chapter we'll see how to define functions in Python and see some of
the many things we can do with functions.

As we have seen, some Python functions compute values and some produce
side effects. The latter kind are called “subroutines” or “procedures” in some
programming languages, but in Python both kinds are called “functions” and
are defined in the same way.

Here's an example of a function definition. As we have seen, Python already
has an absolute-value function, but if it didn't we could define our own like
this:

def abs(n):
if n >= 0:

return n
else:

return -n

A function definition is a compound statement. Its header contains the function
name and the name of the function's parameter. When the statement is
executed, Python binds the function name to the code in the statement's body,
as well as to other details such as the name of the parameter. The body is not
executed yet. When the the function is called, the parameter name is bound
to the value of the argument that is passed to the function, and the body is
executed. A return-statement, a statement containing return and possibly an
expression, terminates the execution of the function body. It also causes the
value of the expression, if there is one, to be returned from the function, and
this value becomes the value of the function-call expression.

Notice that the type of the parameter is not declared anywhere. In fact, the
argument passed to this function can be any value for which the operations
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“>=” and unary “-” are defined. Thus, the function is automatically overloaded
for integer and floating-point arguments; we don't need to do anything special
to make that happen.

As another example, here's how we could take the square-root computation
from the previous chapter and package it as a function:

def sqrt(n):
guess = 1.0
while abs(n - guess*guess) > .0001:

guess = guess - (guess*guess - n)/(2*guess)
return guess

Until now, all the functions that we have seen have had exactly one parameter,
but a function can have more than one. For example, the iteration in the
function above terminates when guess is close to the true square root of n.
The stopping criterion is that the square of guess equals n to within a tolerance
of .0001, but we could define the function so that the tolerance is another
parameter, like this:

def sqrt2(n,tolerance):
guess = 1.0
while abs(n - guess*guess) > tolerance:

guess = guess - (guess*guess - n)/(2*guess)
return guess

Then we would call sqrt2 with two arguments. For example, the call
sqrt2(3,.00005) would do the computation using .00005 as the tolerance.

By the way, we saw another syntax for function calls in the examples of
Chapter 1 and Section 3.3:

line.startswith("John")
line.split(",")
line = file.readline()

This is the syntax that Python uses for calls to a particular kind of function,
called a “method”, which we will see in Chapter 11. For now, it's enough to
say that the value before the “.” is used as the first argument in the function
call, and any remaining arguments are enclosed in parentheses after the
function name as usual.
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Now what about functions that don't return values? One typical use for them
is to produce output, perhaps as the result of a computation. For example,
consider the script from Chapter 1 that calculates and prints the average of
numbers in a file (Example 1.3). That script could be made into a function,
perhaps like this:

def printAverageOfFile(fileName):
sum = 0
count = 0

file = open(fileName)
for line in file:

n = int(line)
sum += n
count += 1

print("Average of numbers in " + fileName + ":")
print(sum/count)

Here, the name of the file is a parameter of the function. This design lets us
easily perform the same computation on more than one file, like this:

printAverageOfFile("observations-April")
printAverageOfFile("observations-May")
printAverageOfFile("observations-June")

It is possible to define a Python function that produces side effects and then
returns a value as well. However, many programming experts believe that a
program's design is cleaner if every function has only one purpose, and either
returns a value or causes side effects but not both. We'll usually stick to that
principle in this book.

4.2. Recursive functions
As in most modern programming languages, a function definition in Python
can be recursive, meaning that the function body can call the same function
that is being defined. In other words, the function is defined at least partially
in terms of itself.

The classic example is the factorial function. For a positive integer n, the
factorial of n, written n!, can be defined mathematically this way:
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n! = n · (n-1) · … · 2 · 1

This recursive definition has a different structure but has the same effect:

n! = 1 if n = 1
n! = n · (n-1)! otherwise

Here is the corresponding Python function definition:

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n-1)

Then suppose factorial is called, say with an argument of 5. Notice how
factorial will keep calling itself, first with an argument of 4, then 3, then 2,
and finally 1. At that point factorial will immediately return 1. Then all the
recursive calls to factorial will return their results in reverse order:
factorial(2) returning 2*1 = 2, factorial(3) returning 3*2 = 6, factorial(4)
returning 4*6 = 24, and finally factorial(5) returning 5*24 = 120.

A good recursive function definition has the following characteristics:

• It is defined by cases (in Python, usually with an if-statement). At least one
of the cases is not recursive: it defines the result directly, rather than in terms
of a recursive reference to the function being defined. Such a case is called
a basis case. In the factorial example, there is one basis case, the case in
which n = 1.

• Every sequence of recursive calls eventually leads to a call in which one of
the basis cases applies. Usually, the basis cases treat the situations in which
the argument is “small” or “simple” or “trivial” in some sense, and the
recursive cases (the cases that are not basis cases) take the function's
parameter and recursively call the function with an argument that is
“smaller” or “simpler” or closer to the basis case in some way. In the
factorial example, the recursive case takes the parameter n and recursively
calls the function with the argument n-1. It is easy to see that every sequence
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of recursive calls will eventually end with n = 1, assuming that n is a positive
integer in the original call.

We won't give a comprehensive treatment of recursive programming in this
book, but we will see recursive functions again several times. In any case,
recursion can be a useful and powerful programming technique and you will
probably have many occasions to use it throughout your programming career.

4.3. Functions as values
In Python, functions are values, much as integers and strings are. A function-
definition statement binds a name to the function's definition, and in Python
this works very much like binding a name to a value in an assignment
statement. Let's explore some of the implications of these facts.

First, once we have defined a function, we can bind another name to that
function. One way to do this is with an assignment statement, as in this
example:

def square(x):
return x*x

sq = square

Now sq is bound to the same function definition that square is, so it computes
the same thing. For example, the value of sq(3) would be 9.

We can also pass a function as an argument to another function. Here's an
example: the function below takes as parameters a function and another value,
and returns the result of applying the function to the argument twice.

def twice(f,a):
return f(f(a))

So, for example, consider the function call twice(square,3), where square is
as defined above. The Python interpreter binds f to the function square and
a to 3, and so returns square(square(3)), which is 3 to the fourth power, or
81. Similarly, the value of twice(sqrt,3) is the fourth root of 3.
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Here's a somewhat more useful example. We can define a Python function
that will compute an approximation to the derivative of a function at a given
point. (For readers who haven't studied calculus: the derivative of a function
is the rate of change of the function's value. Consider a function of one
argument, f(x). Picture a plot of f(x) in the vertical direction against x in the
horizontal direction. The derivative of the function at a given value of x is the
slope of the curve at that value of x.)

The function below does the job. It takes a function f, a value x, and a small
value dx to be used as the magnitude of a small interval. Then the function
derivAt returns the change in value of f over an interval of length dx, starting
at x, divided by the length of the interval, giving an approximation to the
mathematical derivative of f at x.

def derivAt(f,x,dx):
return (f(x+dx) - f(x))/dx

Mathematically, the derivative of x2 is 2x, so the exact value of the derivative
of the square function at the point 3 should be 6. Using the definition of
derivAt above, derivAt(square,3,.00001) should give us an approximation
to that value, and in fact Python does give us a value close to 6.

In Python a function can even return another function as a value. A function
can execute a function-definition statement, creating a new function and
binding that function to a name, and then return the value bound to that
name. Here's an example. The function multiplyBy takes a number as a
parameter and returns a function that multiplies by that number.
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def multiplyBy(n):
def times(m):

return m*n
return times

Remember, a function definition is an executable statement. Here the definition
of times is executed when the body of multiplyBy is executed. The value that
is used for n in the new function is the value that is bound to n at that time,
which is the value of the argument that is passed to multiplyBy. Since m is a
parameter of the new function, it is not bound until that function is called.

We can use multiplyBy like this:

double = multiplyBy(2)
triple = multiplyBy(3)

Then when we evaluate double(7), m is bound to 7, the multiplication is done,
and we get 14. Similarly, the value of triple(33) is 99.

The programming technique that we just used is a special case of a more
general technique: to bind some but not all arguments of a function, leaving
it a function of fewer arguments. This is called partial application. Here's a
function that binds the first argument of any two-argument function, leaving
it a function of one argument.

def partial(f,x):
def f_x(y):

return f(x,y)
return f_x

The function partial takes a two-argument function f(x,y) and a value for x,
and returns a one-argument function that we can denote as fx(y): it is f(x,y)
with the value of x held constant, and there is a different such function for
each different value of x. For example, if mult is a function of two arguments
that returns their product, the value of partial(mult,2) is the same function
as multiplyBy(2).

As a final example, let's define a function that will take the derivative of
another function. It doesn't take the derivative symbolically, as in calculus,
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but it returns a function that gives an approximation to the derivative at any
given point. Here's how we can write it.

def deriv(f,dx):
def d(x):

return derivAt(f,x,dx)
return d

We call deriv with a function of one argument, say square, and a number to
use as an interval size. The new function d uses those values for f and dx in
its call to derivAt, but the new function is still a function of one argument,
x. We can use deriv like this:

derivOfSquare = deriv(square, .00001)

Then the value of derivOfSquare(3) is a number close to 6, just as we found
in the example using derivAt.

A function that takes another function as an argument, or returns a function,
or both, is called a higher-order function. Our twice and derivAt and partial

and deriv are all higher-order functions.

4.4. Lambda expressions
If functions are values in Python, are there expressions that have functions as
their values? Yes, and they are called lambda expressions. The word “lambda”
is the name of the Greek letter λ, and the term comes from mathematics.

In mathematics, a function that adds one to its argument can be denoted this
way:

λx . x+1

We can read that expression as “the function of x that is x+1”. The function
doesn't have a name; it just exists.

That lambda expression would be written this way in Python:

lambda x: x+1
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The value produced by a lambda expression can be bound to a name, passed
to a function, or returned by a function, just as a function defined using def

can. For example, consider the square function from the previous section:

def square(x):
return x*x

We could have defined that same function this way:

square = lambda x: x*x

That is to say, square is the function of x that is x*x. For all practical purposes,
the two definitions have the same effect.

Lambda expressions are handy for creating functions for other functions to
return. For example, here's a version of deriv that is equivalent to the version
in the previous section, but more concise:

def deriv(f,dx):
return lambda x: derivAt(f,x,dx)

Lambda expressions are also handy for creating functions to pass to other
functions. For example, to take the derivative of the square-function, we can
do it like this if we don't have the function square already defined:

derivOfSquare = deriv(lambda x: x*x, .00001)

In mathematics we sometimes use the vocabulary and notation of binary
operators and two-argument functions interchangeably. For example, we may
say that f is associative if f(f(x,y),z) = f(x,f(y,z)). We may even write x f y
instead of f(x,y), or *(x,y) instead of x* y. (Be warned: we'll sometimes take
such liberties with notation in mathematical discussions in the chapters that
follow.) But we can't interchange the notations as freely in Python. For
example, we can't pass an operator like * to a higher-order function directly.
The way to do it in Python is to pass an equivalent function such as lambda

x,y: x*y instead.

We'll see other uses for lambda expressions in later chapters.
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Terms introduced in this chapter
basis casefunction definition
partial applicationparameter
higher-order functionreturn-statement
lambda expressionrecursive function

Exercises
1. For readers who know some calculus: experiment with the deriv function

defined in this chapter and with the derivative functions that you get from
deriv; try using deriv on square and other functions whose derivatives
you know. Especially, experiment with increasingly smaller values of dx;
let those values get very small. Do the results keep getting closer to the
mathematically correct values of the derivatives at given points? Explain
what you see.

2. What happens when a function definition contains a name that isn't bound
to anything in the function definition?

def f(n):
return n + a

This is clearly an error if a isn't given a value anywhere.

a = 1
def f(n):

return n + a

Now f is a function that adds 1 to its argument. But what about this case?

a = 1
def f(n):

return n + a
a = 3

After that, does f add 1 or 3? If you need to, experiment with the Python
interpreter — can you explain what you see? Look again at the first page
of this chapter.
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Chapter 5
Tuples
5.1. Ordered pairs and n-tuples

In this chapter we'll start to explore mathematical structures and how they
can be used in programming. We saw some of these mathematical structures
in the examples of Chapter 1. Let's start with the ordered pair.

Here, “pair” simply means a grouping of two things. “Ordered” means that
it makes a difference which is first and which is second. They may be different
kinds of things, or they may have different meanings, or the distinction may
be important in some other way. So an ordered pair is not the same as a set
of two elements.

One important use for ordered pairs is to locate a place or point in two
dimensions: latitude and longitude on the Earth's surface, for example, or
horizontal and vertical coordinates in a plane. Complex numbers are similar:
their real and imaginary parts are often pictured as coordinates in the “complex
plane”.

An “ordered triple” is a similar mathematical object with three components
instead of two. For example, to locate a point in three dimensions we need
three coordinates, so they would be an ordered triple of numbers. We can
omit the word “ordered” in situations in which it would be assumed, so we
can say “triple” instead of “ordered triple” and even “pair” instead of “ordered
pair”.

Similary, an ordered grouping of four elements is called an “ordered
quadruple” or just a “quadruple”. For more elements the names follow the
same pattern: quintuple, sextuple, septuple, octuple, and so on.

But using Latin prefixes becomes a bit clumsy for large numbers of elements.
Besides, we need a collective name for “tuples” of any size. The mathematical
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term that we'll use is n-tuple. We'll substitute a number for n when we have
a particular n in mind. So, for example, a 4-tuple is the same as a quadruple
and a 2-tuple is the same as an ordered pair.

In mathematics, an n-tuple is typically denoted by components separated by
commas and enclosed in parentheses, as in (3, 4) and (x, y, z). N-tuples are
often used to construct complex mathematical objects out of more basic ones,
as in the following typical definitions from mathematics and computer science:

A graph G is a pair (V, E), where V is a set of vertices and E is a set
of edges.

A grammar is a 4-tuple (N, T, P, S), where N is a set of symbols called
the nonterminal alphabet, T is a set of symbols called the terminal
alphabet, P is a set of productions consisting of…

As the concept of an n-tuple is typically used in mathematics, an n-tuple
contains a finite number of components and most often a rather small number.
The components are not necessarily all the same kind of mathematical object.
On the other hand, the components are not necessarily all different, as they
are in a set.

5.2. Tuples in Python
Mathematical n-tuples can be represented in Python by the type called “tuple”.
A Python tuple is created by using a comma as a binary operator, like this:

pair = 3, 4
quadruple = "Story number", 3, "is", True

The components of a Python tuple need not all have the same type, as the
second example illustrates.

Python programmers often enclose tuples in parentheses, like this:

pair = (3, 4)
quadruple = ("Story number", 3, "is", True)
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The parentheses are not strictly part of the tuple notation in Python, but they
are syntactically necessary in many contexts. For example, to pass the tuple
3,4 to the function f, one would write f((3,4)) because f(3,4) would pass
3 and 4 as separate arguments. Furthemore, parenthesizing is consistent with
mathematical notation, and (as we will see) it is symmetric with notation for
other Python types such as lists and sets. Therefore, we will usually enclose
our tuples in parentheses hereafter in this book.

There are two special cases. First, the empty tuple is written (). Second, a
tuple with only one component is written as a single value followed by a
comma, usually enclosed in parentheses like any other tuple. The comma is
necessary to distinguish a one-component tuple from a single value: for
example, (3,) is a tuple but (3) is just an integer expression whose value is
3. Like the empty string, the empty tuple and one-component tuples may seem
trivial but have their uses, as we will see.

The comma operator “packs” values together into a single object. To unpack
a tuple, we can use a syntax that mirrors the syntax used to pack a tuple: an
assignment statement with more than one name on the left-hand side, separated
by commas. For example, if pair has the value (3,4), the following statement
unpacks pair and gives x the value 3 and y the value 4.

x, y = pair

We can also enclose the sequence of names on the left-hand side in parentheses,
if we want to emphasize that we are doing tuple unpacking:

(x, y) = pair

This form might make it more clear that we are not simply binding both x

and y to the whole tuple.

Here is another common use for the tuple-unpacking syntax: the simultaneous
assignment.

x, y = y, x

This statement evaluates y and x, makes a tuple of them, and then unpacks
the tuple and binds the values to x and y. The effect is as if Python assigns y
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to x and x to y simultaneously. Here, the effect is to interchange the values of
x and y without using a temporary variable to hold one or the other.

We can also extract a component of a tuple by position, numbering the
components from 0. For example, if x has the value (7,13), the value of x[0]
is 7 and the value of x[1] is 13. This syntax corresponds to the subscript
notation in mathematics, in which those expressions would be written as x0
and x1 respectively.

5.3. Files and databases
Many applications of n-tuples in computing deal with collections of n-tuples
of the same kind: that is, the n-tuples in a collection have the same number
of components, and the corresponding components have the same type and
meaning in each n-tuple. We saw an example in Chapter 1 (Example 1.2): the
file that contained ordered pairs, with each pair containing a name and an
email address. As we saw in that chapter, we often view the whole collection
as a set or sequence of tuples.

We can view many computer files as collections of this kind. Typically, such
a file is divided into lines, and each line is divided into fields. Each field may
be a certain number of characters in length; or, more commonly nowadays,
the fields may be separated by delimiters, such as the comma in the name-and-
emails file in Example 1.2. Other common choices for the field delimiter are
a tab character and a sequence of space characters.

Such files are often called flat files, “flat” meaning that the file has no structure
other than being divided into lines and fields. When the delimiter is a comma,
a flat file is said to be in CSV format, where “CSV” means “comma-separated
values”. Many popular programs store their data in CSV format or can export
their data in that format for other programs to import.

Many databases are essentially collections of n-tuples of data elements. In
fact, the style of database called a relational database is explicitly defined in
mathematical terms. A relational database is a set of relations, and each relation
is a set of “tuples” that resemble our mathematical n-tuples. In Chapter 1 we
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defined a relation as a set of ordered pairs, but such a relation is really just a
special case called a binary relation. In mathematics, a relation is defined more
generally as a set of n-tuples for some given n. A relation in a relational
database is like that.

A database relation can be pictured as a table, and in fact the word “table”
is often used interchangeably with “relation”. Each element of such a table is
called a “tuple” or a “record”, and each component of a tuple is called a
“field”. Fields are identified by name; in a picture of a relation, these names
are shown as headings on columns of the table.

Strictly speaking, a tuple in a relational database is not the same as a
mathematical n-tuple, because fields in a database tuple are identified only by
name, not by position. This means that when we picture a relation as a table,
the order of the columns is actually arbitrary. So a more accurate description
of a database tuple is as a set of named fields, or as a mapping from field
names to values.

In some simple relational database systems, the software stores the relations
in flat files, one file per relation, and many database systems can at least export
data in that form. A typical format for such files is a variant of CSV format,
with some arbitrary order chosen for the fields in the tuples. The first line of
the file contains the field names, separated by commas, and the remaining
lines contain the tuples. Such a file is really not quite “flat”, since it does have
this minimal structure. We can view such a file as an ordered pair whose first
component is the line containing the sequence of field names and whose second
component is a sequence, the lines representing the set of tuples.
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project,name,lab
Alpha,Lambert,221
Alpha,Torres,244
Beta,Malone,152
Beta,Harris,152
Beta,Torres,152

We will return to flat files, CSV files, and relational databases in later chapters.

Terms introduced in this chapter
CSV formattriple, quadruple, etc.
relational databasen-tuple
binary relationdelimiter

flat file
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Chapter 6
Sequences
6.1. Properties of sequences

We see the concept of “sequence” over and over in computing. We have seen
examples of several kinds of sequences already:

• Strings, which are sequences of characters.

• Files, which (at least as seen by Python programs) are sequences of lines.
Each line is itself a sequence of characters.

• The sequences generated dynamically by such Python objects as opened-file
iterators and range.

Let's consider some of the properties that these and other sequences have in
common.

First, notice that all these examples of sequences are not just generic sequences,
but sequences of some particular kind of thing. Most of the sequences that
we use in computing are homogeneous, meaning that all elements of the
sequence are of the same kind, or at least we can view the elements that way
by identifying a sufficiently general kind of thing that encompasses them all.
For example, a line of a file may contain digits and letters and other kinds of
characters, but we can view it as simply a sequence of characters.

So, as we usually use the terms, “n-tuple” and “sequence” are somewhat
different concepts, even though both n-tuples and sequences are ordered
collections. We expect a sequence, but not an n-tuple, to be homogeneous.
On the other hand, we expect a particular kind of n-tuple to have a fixed
number of components. This is not necessarily true of sequences: for example,
a file can contain any number of lines, from zero to many.
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Now let's consider some mathematical properties of sequences. We'll use
strings as an example, and then see how other sequences share some of their
essential properties.

Recall that one important operation on strings is concatenation. The
concatenation of two strings A and B is the string formed by taking the
characters of A in order followed by the characters of B in order.

We can define concatenation of other sequences in exactly the same way. For
example, the concatenation of two files is the lines of the first followed by the
lines of the second, producing a third sequence of lines.

Concatenation of two sequences makes sense only if the sequences have the
same kinds of components, so that the resulting sequence is homogeneous.
For example, it doesn't make sense to concatenate a sequence of strings with
a sequence of integers. But when two sequences do have the same kinds of
components, the result of the concatenation is a sequence whose components
are all of that same kind.

We have noted that there is an empty string, and this is a special case of the
empty sequence, which is the sequence whose length is zero. Let us denote the
empty string or sequence as e: then, in either case, e has the property that e +
a = a and a + e = a for any string or sequence a, where “+” denotes
concatenation. In mathematical vocabulary, e is an identity for concatenation.

Concatenation of strings has the associative property: if + is the concatenation
operator, (a + b) + c = a + (b + c) for any strings a, b and c. In fact, exactly
the same is true for concatenation of sequences of any kind.

However, concatenation of strings or other sequences is not commutative:
a + b ≠ b + a, unless a and b are the same or one of them is empty.

So let's summarize. Consider the set of all sequences of elements of a particular
kind; call that set A. Then we have the following facts:

• The concatenation operation + takes two operands from A and produces
another member of A.
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• Concatenation is associative, but not commutative.

• A contains an element e, the empty sequence, which is an identity for
concatenation.

6.2. Monoids
It may not be just a coincidence that Python uses “+” as the concatenation
operator for strings and (as we will see) for other kinds of sequences. The
usage seems rather appropriate because concatenation is sometimes described
informally as “adding” one sequence to the end of another. But concatenation
is like adding in other ways. Consider the mathematical integers and the
addition operation. The result of adding any two integers is another integer.
Addition is associative. And addition has an identity: it is 0, because 0 + n =
n + 0 = n for any integer n. So, to this extent, strings and concatenation behave
like integers and addition.

Both strings with concatenation and integers with addition are examples of
the mathematical structure called a monoid. A monoid is a set that has an
associative binary operator and an identity element.

More formally, a monoid is an ordered pair (S, ⊗) such that S is a set and ⊗
is a binary operator, satisfying these conditions:

1. For all a and b in S, a ⊗ b is defined and is also in S.

2. For all a, b and c in S, (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).

3. There is an element e in S such that, for all a in S, e ⊗ a = a ⊗ e = a.

Then we also say that S is a monoid under ⊗, with identity e.

The concept of “monoid” comes from the field of advanced mathematics
called “abstract algebra”. The name “monoid” may sound exotic, but the
concept is simple enough, and there are many examples of monoids in
mathematics and in programming. Here are the examples that we've already
mentioned and several more.
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• The mathematical integers are a monoid under addition, with identity 0.
They are also a monoid under multiplication, with identity 1. Both operators
are also commutative. Integers in Python have these same properties.

• The mathematical real numbers are a monoid under addition, with identity
0. They are also a monoid under multiplication, with identity 1. Both
operators are commutative.

The Python floating-point numbers are not quite a monoid under addition:
for floating-point operands, (a + b) + c is often not exactly equal to
a + (b + c) because of roundoff error. The same is true of multiplication.
But in many applications the equalities are close enough for computational
purposes.

• Python Booleans are a monoid under and, with identity True. They are also
a monoid under or, with identity False.

Notice that these claims are true even given the way Python evaluates those
Boolean operators, sometimes giving a valid result even if the second operand
is undefined or otherwise does not produce a Boolean value. Conditions
1–3 in the definition of “monoid” say nothing about the behavior of ⊗ if
either of its operands is not in the set S.

• Suppose that max is the maximum-function, so that max(x,y) is defined to
be x if x ≥ y and y otherwise. Recall that we can speak of max as if it were
an operator and write x max y instead of max(x,y). Then max is both
associative and commutative, and the non-negative integers are a monoid
under max, with identity 0.

• Consider the minimum-function min defined similarly. Then min is both
associative and commutative, and the Python floating-point numbers are a
monoid under min, with identity the infinite value obtained from
float("inf").

• Sequences of elements of a given set are a monoid under concatenation,
with the empty sequence as identity.
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• Python strings are a monoid under +, with identity "".

Later we'll see ways that we can take advantage of the similarities among
these and other monoids.

A set that has an associative binary operator, but not necessarily an identity
element, is called a semigroup in abstract algebra. A semigroup is like a monoid
except that condition 3 is dropped from the definition. Every monoid is a
semigroup, but not every semigroup is a monoid.

An example of a semigroup that is not a monoid is the set of positive integers
under addition: 0 is not in the set of positive integers and so the set has no
identity. We'll see a few more examples of semigroups without identities as
we go along, but most semigroups that we'll talk about have identity elements
and so are also monoids.

By the way, a group is a semigroup that has inverses as well as an identity. In
other words, it is a monoid in which every element a has an inverse a-1 such
that a ⊗ a-1 = e and a-1 ⊗ a = e, where e is the identity. For example, integers
under addition are a group, where the inverse of each number is its negative.
Groups are very important in mathematics and some other fields, such as
particle physics, but most of the monoids that are important in programming
are not groups. For example, strings under concatenation are not a group,
because most strings don't have inverses. There is no string that you can
concatenate to a nonempty string to get an empty string.

Some monoids have properties other than properties 1–3 in the definition of
a monoid. For example, consider the mathematical integers under addition;
they are not only a monoid but also a group. Besides, addition is not only
associative but also commutative. Integers also have multiplication, and the
two operators are related by the distributive property: a(b + c) = ab + ac.
Integers are ordered by the “less than” relation, each integer has a unique
prime factorization, and the integers have many more properties. A
mathematician would say that the integers have more “structure” than that
implied by the fact that they are a monoid under addition.

61

Monoids



Sequences, on the other hand, have no such additional structure. For a given
set S, the set of all finite sequences of zero or more elements of S forms (under
concatenation) what mathematicians call a “free monoid”, “free” in the sense
that the monoid obeys no laws or constraints other than those implied by the
definition of a monoid. This means that, in programming, such data types as
strings and lists are blank slates: they can be used to represent and store almost
any kind of data that one can imagine.

Strings under concatenation are a classic exemplar of a monoid. To say that
a set and an operation form a monoid, then, is to say that the set and operation
behave, at least to some extent, like strings and concatenation. They may have
more properties and behavior, but they have at least the properties and
behavior of strings and concatenation. We can think of strings to remember
how monoids behave. If we prefer, we can even say “string-like object” instead
of “monoid” or “is string-like” instead of “is a monoid”, although the term
“monoid” is concise and expresses the concept exactly.

We can often transfer what we know about strings and concatenation to other
monoids in programs, translating vocabulary appropriately. For example, let's
consider an expression that contains several instances of the string
concatenation operator:

s0 + s1 + s2 + … + sn

Because the operator + is associative, we don't need to put parentheses in the
expression to indicate which concatenations are done first, and we don't need
rules to say that the evaluation is left-to-right or right-to-left or in any other
order. We don't need to think of evaluation order at all; we can look at the
expression as simply a sequence of operands that are all combined with the
+ operator.

This line of thinking leads us to the idea of a “big +” operator that, instead
of taking two operands, takes a sequence of operands and concatenates them
all:
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It's not hard to see how we could write Python code to implement the “big
+” operation. We leave the details as an exercise.

Once we know how “big +” works and how to implement “big +” for strings,
we can transfer what we know to any other monoid. For any monoid operator
⊗, we can define a “big ⊗” operator that works in much the same way as “big
+”:

And whatever ⊗ may be, we can often use any Python code that implements
or uses “big +” as a model for Python code that implements or uses “big ⊗”.

The "big" operators (as we have called them) are common in mathematics,
and there are traditional symbols for some of them. For example, the “big +”
for integers and real numbers is Σ (the uppercase Greek letter sigma, for
“sum”), and the “big *” for numbers is Π (the uppercase Greek letter pi, for
“product”).

Everything that we have said about monoids has implications for programmers,
and we'll see some of these implications in the sections and chapters that
follow.
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6.3. Sequences in Python
We have seen one Python construct for representing sequences, the tuple;
another is the type called “list”. In fact, a Python tuple can represent either a
mathematical n-tuple or a sequence, and so can a Python list.

Lists are created by separating a sequence of values by commas and enclosing
the whole sequence in square brackets, like this:

[2,3,5,7,11]

This construct is called a list display. The empty list is denoted by the list
display []. A list display with only one component can be written with just
square brackets but no comma, since that syntax has no other possible
meaning: an example is ["John"].

We may think of a construct like (2,3,5,7,11) as a “tuple display”, but it
isn't really. As we have seen, in this context the comma is a binary operator,
and it is the commas and not the parentheses that produce the tuple. But the
tuple notation using parentheses and the notation of list displays using square
brackets are very similar and ultimately have similar meanings, a fortunate
consequence of Python's syntax rules.

Lists and tuples are alike in many ways. For example, positions in a list are
numbered from 0, and a component can be selected using the subscript
notation. If the name a is bound to the list [2,3,5,7,11], then a[2] is 5.

Lists, like tuples, can be unpacked using an assignment statement with more
than one name on the left-hand side. That's what we did in the script of
Example 1.2:

name, email = line.split(",")

The value returned by the function split is a list, which has two components
if line contains a single comma. The assignment statement unpacks this list
into two variables.
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The difference between tuples and lists is that lists are mutable objects: their
values can be changed in place. For example, the subscript notation can be
used on the left-hand side of an assignment statement to change a component
of a list. Consider these statements:

a = [2,3,5,7,11]
a[2] = False

After these statements are executed, the name a is still bound to the same
object, the list, but part of that object has been altered: the object's value is
now [2,3,False,7,11]. (Notice that lists can be heterogeneous just as tuples
can be.)

Now that we have mutable objects, we need to observe the distinction between
objects and their values. In Python, names are bound to objects, not directly
to values. Suppose we do this:

a = [2,3,5,7,11]
b = a
a[2] = False

The assignment b = a binds b to the same object that a is bound to; in other
words, it creates an alias for that object. We must be careful when we create
aliases for mutable objects, because the effect may not be what we want. In
this case, a is bound to an object that now has the value [2,3,False,7,11],
but so is b, even though we have done nothing explicit to change b.

If you are familiar with the concept of a pointer from other programming
languages, you can think of the Python bindings in this example as like pointers
to objects. The first line creates a list and causes the value of a to be a pointer
to that list. The second line copies the pointer to b, so that now there are two
pointers to the same list.
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Python has a generalization of subscripting called “slicing”: if x is a tuple,
x[i:j] is another tuple containing the components of x at positions i up to
but not including j, and similarly if x is a list. For example, after the statements
above, a[0:2] is the list [2,3]. One useful variation on this syntax is the slice
with no upper bound: in this case, the slice continues to the end of the
sequence. For example, x[1:] contains all components of x except the first.

Strings are sequences just as tuples are, so subscripting and slicing can be done
on strings too. For example, if name is "John Davis", then name[0:4] is the
string "John".

If a is a tuple or a list or a string, len(a) is the length of a; that is, how many
components it has. In the case of a string, this is the number of characters in
it.

Some other operations on sequences use the method-call syntax. We have
already seen the startswith method for strings. Other methods can be applied
to any Python sequence. An example is count, which counts the number of
occurrences of a value in a tuple, list, or string; for example, if a has the value
"Look at me!", then a.count("o") has the value 2.

Python has methods for modifying a list in place; these methods can only be
applied to lists, not tuples or strings, because only lists are mutable. An example
is append, which appends a value to the end of a list. For example, suppose b

has the value [1,2,3]. Then, after the statement b.append(4), is executed, b
has the value [1,2,3,4].

The + operator can be used to concatenate two tuples or two lists, and the
result is another sequence of the same kind. So the set of all Python tuples is
a monoid under +, and so is the set of all lists. So is the set of all tuples or lists
of elements of a particular type or having some particular property, such as
all lists of strings, or all tuples of names of European cities. (Python does not
overload + for concatenation of a tuple and a list, or a list and a string, or any
other such combination.)

So, except that lists are mutable, tuples and lists have almost identical behavior,
and a programmer can choose either for many purposes in programs.
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Generally, though, we will use tuples rather than lists hereafter in this book
except where we need sequences that are mutable.

Like the type conversion function int, there are functions tuple and list to
convert any other kind of sequence to a tuple or list respectively. For example,
the value of tuple([2,3,5,7,11]) is (2,3,5,7,11) and the value of
list("Hello") is ["H","e","l","l","o"]. We can even use tuple or list on
an object that generates a sequence of values, such as a range object or an
iterator. For example, the value of tuple(range(5)) is (0,1,2,3,4); here tuple
forces range to generate all of its values at once to pack into the tuple.

A Python for-statement can iterate over the components of any kind of
sequence. We have seen several examples already, but here is another using a
tuple:

for place in ("London", "Paris", "Istanbul"):
print("Hello from " + place + "!")

Iterating over a tuple of constants, as in this example, is a handy way to do
the same operation for each of a fixed set of values.

6.4. Higher-order sequence functions
We can perform a wide range of computations on sequences easily and
elegantly by using higher-order functions. Let's develop this idea by defining
a classic trio of higher-order functions — map, filter, and reduce — and
exploring some ways to use them.

The first, map, applies a one-argument function to every element of a sequence,
producing a tuple of the results. A call to map will take this form:

map(f,sequence)

For example, applying map to functions that we defined in Section 4.3,
map(double,(2,3,5,7,11)) is (4,6,10,14,22) and map(square,range(10)) is
(0,1,4,9,16,25,36,49,81).

Here's how we can define the map function. It's not hard:
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def map(f,sequence):
result = ( )
for a in sequence:

result += ( f(a), )
return result

Are you concerned that the “result +=…” tries to modify result in place,
when result is an immutable object? Don't worry. Recall that “result +=…”
means “result = result + …”, so we're not really modifying result in place.

Notice that sequence can be any value that generates a sequence when used
in the header of the for-statement: it can be a tuple, a list, a range, or an
iterator.

Python has a similar map function built in, but it doesn't work in quite this
way. We'll see how it does work in the next chapter.

Our second function, filter, takes a one-argument function that returns a
Boolean, and a sequence. The filter function applies the given function to
each element of the sequence and returns a tuple of only the elements for
which the function returns True. A call will take this form:

filter(test,sequence)

For example, filter(lambda x:x>0, (2,3,0,-5,7,-11)) is (2,3,7).

Again, Python has a similar function built in, but we can easily define our
own version. We leave this task as an exercise.

Our third function, reduce, takes another function and a sequence of values,
and reduces the values to a single value by combining them using the function.
A call will take this form:

reduce(f,sequence,initial)

Here, f will be a two-argument function that acts like a binary operator, and
reduce will use it to combine successive pairs of values as if the operator were
placed between those values. The value initial will be used as a starting
value; it will be the value returned as a default if the sequence is empty.
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For example, suppose that plus is a two-argument function that does addition:

plus = lambda x,y: x+y

Then suppose that a is a sequence of integers a0, a1, a2, … and i is some integer
value. Then the value of reduce(plus,a,i) is

i + a0 + a1 + a2 + …

In particular, the value of reduce(plus,a,0) is simply the sum of the elements
of a. To describe it another way, it is the “big +” operation of Section 6.2
applied to a.

By now it should be easy for us to implement reduce. In fact, the code is
surprisingly similar to the code for map:

def reduce(f,sequence,initial):
result = initial
for a in sequence:

result = f(result, a)
return result

Now notice that we can use reduce on any values and operation that form a
monoid, using the monoid identity as the starting value. In fact, reduce gives
us an easy way to define any of the “big” operations that we described in
Section 6.2.

Specifically, suppose that a set A is a monoid under ⊗, with identity e. Suppose
that the function f implements the monoid operation, so that f(x,y) = x ⊗ y.
And suppose that S is a sequence of values a0, a1, a2, … from A. Then

reduce(f, S, e) = e ⊗ a0 ⊗ a1 ⊗ a2 ⊗ …
= a0 ⊗ a1 ⊗ a2 ⊗ …

In other words, it is “big ⊗” applied to S.

For example, if S is a sequence of numbers (integer or floating-point or any
combination), the value of reduce(plus,S,0) is the sum of the elements of S,
as we have seen. Let's define that sum as a function:
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sum = lambda S: reduce(plus, S, 0)

Then sum is a one-argument function that acts like “big +”. We can use the
same pattern for the product of the elements of a sequence:

product = lambda S: reduce(lambda x,y: x*y, S, 1)

Or suppose S is a sequence of strings: the concatenation of all of the strings
in S is

cat = lambda S: reduce(lambda x,y: x+y, S, "")

As a matter of fact, we could write that as … reduce(plus,S,"") since plus

(as we defined it above) is automatically overloaded for strings and is
concatenation when used that way.

Notice that our function definition for reduce causes it to perform its operation
left-to-right:

reduce(f, S, e) = ( … (((e ⊗ a0) ⊗ a1) ⊗ a2) ⊗ … )

Knowing this, we can use that implementation of reduce with operations that
are not necessarily associative, as long as left-to-right is the evaluation order
that we want. But suppose we need right-to-left evaluation. Then we would
want a function similar to reduce that acts this way:

reduceRight(f, S, e) = (a0 ⊗ (a1 ⊗ (a2 ⊗ (… ⊗ e) … )))

One way to define reduceRight is recursively, like this:

def reduceRight(f, sequence, initial):
if len(sequence) == 0:

return initial
else:

return f(sequence[0],
reduceRight(f, sequence[1:],

initial))

Of course, if the operation is associative, as with a monoid, the evaluation
order does not matter, and we can use reduce and reduceRight

interchangeably.
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We can do a surprising variety of programming tasks using little more than
the map, filter, and reduce functions and other functions defined using them.
For example, we can rewrite the sample scripts of Section 1.2 using only one
Python expression apiece.

Here is the first of those scripts (Example 1.1) again. It displays every line of
the file names that starts with “John”.

file = open("names")
for line in file:

if line.startswith("John"):
print(line)

Example 6.1 shows another way to write it. The iterator open("names")

produces a sequence of strings, each ending in a “new line” character. We use
filter to get only the strings that start with “John”; and we use cat, which
we defined above using reduce, to combine those strings into a single string.
Because of the “new line” characters, that string is broken into lines when we
display it using print. If it weren't for this fortunate fact, we could break the
lines properly anyway by using map to insert a “new line” character ("\n" in
Python) after each name — can you see how?

Example 6.1. Finding a name again, in functional style
print(cat(filter(lambda x: x.startswith("John"),

open("names")))

We leave the task of rewriting the second script (Example 1.2) as an exercise;
here is the third script (Example 1.3) again. It displays the average of the
integers in the file observations.
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sum = 0
count = 0

file = open("observations")
for line in file:

n = int(line)
sum += n
count += 1

print(sum/count)

To do the equivalent computation, we use map with the conversion function
int to convert the sequence of file lines to a tuple of integers. To that tuple,
we apply a function that divides the sum of a tuple's elements (which we get
using the function sum that we defined above using reduce) by the length of
the tuple. Example 6.2 shows the complete program.

Example 6.2. Average of observations again, in functional style
print((lambda a: sum(a)/len(a))(

map(int, open("observations"))))

The style of programming that we are using here is called functional
programming. In functional programming, instead of writing sequences of
statements, we write nestings of function calls. Instead of storing intermediate
results in variables, we take the values returned by function calls and use them
directly as arguments in other function calls. Instead of iterations, we use
recursion and higher-order functions like map, filter, and reduce.

There are “functional programming languages” that emphasize functional
programming almost to the exclusion of any other style of programming; some
that you may encounter are LISP and its dialects such as Scheme, ML and its
dialects, and Haskell. But functional programming is easy enough to do in
Python, and it gives you a useful collection of techniques to add to your
repertoire.
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6.5. Comprehensions
Another Python construct for creating lists is the list comprehension, which
is another kind of list display. A list comprehension constructs a list from one
or more other sequences, applying function application and filtering in much
the same way as the map and filter functions do, but with a syntax that
perhaps suggests the structure of the result more directly.

Here is the most basic form of a list comprehension:

[ expression for name in sequence ]

This binds the name to successive values from the sequence, evaluates the
expression with each such binding, and makes a list of the results. Here is an
example:

[ 2**n for n in range(5) ]

The value of this expression is a list of the first five powers of 2, or
[1,2,4,8,16]. In other words, it is the same as

list(map(lambda n: 2**n, range(5)))

A comprehension is somewhat more general than an application of map, because
it can contain more than one “for … in” phrase. Here is an example:

[ (a,b) for a in range(6) for b in range(5) ]

This produces a list of all thirty different ordered pairs of numbers whose first
component is in the range 0…5 and whose second component is in the range
0…4.

A comprehension can also filter the sequence that it draws values from. Then
the syntax is

[ expression for name in sequence if test ]
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This is much like map(expression, filter(test, sequence)), except that the
expression and the test are expressions rather than functions and the result is
a list.

Here is an example:

[ line[5:] for line in open("names")
if line.startswith("John ") ]

This produces a list of strings, selecting the lines that start with “John ” in
the file names and taking the remaining characters of each such line. In other
words, the result is a list of the surnames of people named John, assuming
that each name in the file is just a first name and a surname.

What about tuple comprehensions? We might think that we could write

( line[5:] for line in open("names")
if line.startswith("John ") )

and get a tuple of the surnames instead of a list. Python has a surprise for us.
Yes, this syntax is good Python, but instead of a tuple comprehension it is a
generator expression, and its value is an iterator that generates a sequence
dynamically. We'll see more about generator expressions in the next chapter;
for now, let's just say that in many situations we can use a generator expression
as we would use a tuple comprehension if Python had such a thing.

As we'll see in later chapters, Python also has comprehensions for sets and
mappings.

6.6. Parallel processing
The world constantly demands computers that can process more data faster.
Until recently computer makers have met the demand by improving traditional
processors — those that perform a single operation on a single piece of data
at a time — making them faster, smaller and cheaper every year. But this kind
of progress cannot continue forever. Already chip makers are fighting against
fundamental physical limitations such as the size of molecules, the speed of
light, and the heat generated by running a chip at a high clock rate.
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The future of computing clearly lies in parallel processing: performing many
operations on many pieces of data at the same time. And the future is already
upon us. Parallel-processing hardware once existed only in research labs and
at supercomputer sites, but now many of us use it every day:

• Many of our desktop and laptop computers now contain multicore
processors: those that contain two or more of the elements that we used to
call “processors” within a single chip or group of closely-connected chips.
Newer computers are being produced with more and more cores every year.

• Specialized graphics processing units (GPUs) are now inexpensive enough
that they are built into many desktop and laptop computers, as well as other
devices such as gaming consoles and even mobile phones. Current GPUs
contain many specialized computation elements that operate in parallel,
and manufacturers are producing GPUs with more and more parallelism
every year.

Parallel computing will be one of the great challenges for programmers in the
coming years, and programmers will need to learn new skills and think in new
ways. Our traditional style of program is sequential, with a single flow of
control through the code. How can we write code that produces the same
results, but faster, using many computations executing at the same time?

It won't always be easy. Parallel computations must collaborate with each
other, and one of the big difficulties is to keep them from interfering with each
other instead. Some parts of computations can't safely be done at the same
time because they may interfere with each other, creating an incorrect result.
Think of two programs trying to write to a file at the same time, for example.

The computer science community has spent decades developing techniques
for organizing and synchronizing parts of parallel computations so that they
don't interfere with each other, and this technology is well beyond the scope
of the current book. But let's examine the implications of one obvious principle:

Two computations can be done in parallel if they are independent of each
other; in other words, if whatever one computation does can have no effect
on what the other does.
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For example, consider a sequence of assignment statements of the form

x = E
y = F

If the expression F does not access x, and if E does not access y, and if the
evaluation of E has no side effects on variables that occur in F and vice versa,
then the assignment statements are independent of each other and can be
executed in parallel. Otherwise, they are not independent and must be
performed in sequence.

It is not always easy to analyze code to determine what parts of it are
independent of one another, or to write code in which parts of it are guaranteed
to be independent of one another. But here's some good news: in the world
of functional programming, many parts of our computations are automatically
independent of one another, so we get plenty of opportunities to do
computation in parallel.

Let's consider computations — programs or parts of programs — that consist
entirely of evaluating expressions and applying functions, in which no
expression or function has side effects. In such computations, many
opportunities for parallel computation are easy to identify:

• Consider a function call of the form f(P, Q) or an expression of the form
P ⊗ Q. Since evaluating P is independent of evaluating Q, they can be
evaluated in parallel. The same principle applies to function calls with three,
four, or more arguments.

• Consider a map operation of the form map(f, S). Then applying f to any
element of S is independent of applying f to any other element. Therefore,
all these computations can be done in parallel.

• The same is true of a filtering operation of the form filter(test, S). The
test can be done on all components of S independently, and thus all the tests
can be done in parallel.
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• Consider a reduce operation of the form reduce(f, S, e), where f is
associative and has identity e, as in a monoid. Suppose we break the sequence
S into sub-sequences S1 and S2, so that S = S1 + S2. Then, by associativity of
f,

reduce(f, S, e) = f(reduce(f, S1, e), reduce(f, S2, e))

Thus we can reduce S1 and S2 separately, and in fact in parallel, and then
combine the results using f. In fact, we can break S1 and S2 into even smaller
sequences and reduce them in parallel in the same way, and so on.

For example, suppose that S has eight components a0 … a7 and that f
implements the monoid operation ⊗, so that the reduce operation computes
the expression E below:

E = a0 ⊗ a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ⊗ a6 ⊗ a7

By associativity, E is equal to

((a0 ⊗ a1) ⊗ (a2 ⊗ a3))   ⊗   ((a4 ⊗ a5) ⊗ (a6 ⊗ a7))

So to evaluate E we can apply ⊗ to four pairs of components in parallel,
then take those results and apply ⊗ to two pairs of them in parallel, and
finally apply ⊗ to those two results.

A diagram of this kind is called a tree in mathematics and computer science:
here the “root” is at the bottom and the “leaves” are at the top. The tree
shows each operator connected to its operands. Since ⊗ is a binary operator,
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each operator in the tree is connected to two operands, and so this is called a
binary tree.

We can draw a similar tree to illustrate how E would be evaluated when
evaluation is entirely left-to-right:

And with right-to-left evaluation, the tree would look like this:

But the first of these three trees is “balanced”. A balanced tree has the fewest
possible levels for the number of leaves that it contains.

In fact, the number of levels of operators in a balanced binary tree with n
leaves is log2 n, rounded up. In the first tree, for example, there are 8 operands
and log2 8 = 3, so there are 3 levels of operators.

Let us say that we are using “balanced parallel evaluation” when we structure
an expression evaluation as a balanced tree in this way and do all operations
that are at the same level in parallel. Now let's define a time unit as the time
it takes to perform one ⊗ operation. Then if we can perform as many
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computations in parallel as necessary, we can evaluate an expression of this
kind most efficiently by using balanced parallel evaluation, and do the
evaluation in log2 n time units.

In that analysis we ignore all overhead — the time it takes to allocate
computations to different processors, transmit the results back, coordinate all
the computations, and so on — and in practice this overhead time can add
significantly to the total time required. But if ⊗ is a sufficiently time-consuming
operation, taking a long time compared to the overhead time, balanced parallel
evaluation can speed up the computation significantly.

You might imagine a version of the reduce operation that does its reduction
in parallel as much as possible by using balanced parallel evaluation. That
version of reduce would require its function argument to be associative, of
course.

We won't discuss how to arrange for computations to be done in parallel, in
Python or otherwise. Again, that topic is beyond the scope of this book, and
is likely to depend heavily on the technology available in a particular computing
environment at a particular time. But the main principle — that independent
computations can be done in parallel — and the implications of that principle
are general and broadly applicable and should be relevant in any particular
case.

Yes, adjusting to the world of parallel computation will be a challenging task
for programmers. But programmers who know how to think of data and
operations in terms of their mathematical properties, and who know how to
write computations using higher-order operations and functional programming,
are likely to have a head start.

In the chapters that follow, we'll point out more opportunities to apply our
mathematical thinking to parallel computing.

Terms introduced in this chapter
aliasidentity
functional programmingmonoid
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list comprehensionsemigroup
parallel processinggroup
treelist display
binary treemutable object

Exercises
1. In Python floating-point arithmetic, try to predict some values of a, b and

c for which (a + b) + c is not exactly equal to a + (b + c). Explain your
reasoning. Check your predictions with the Python interpreter.

2. Are percentages (the mathematical real numbers between 0 and 1 inclusive)
a monoid under addition? Under multiplication?

3. Are Python integers a monoid under **? If so, what is the identity?

4. Are the Python and and or operators commutative?

5. The field of abstract algebra contains many interesting and useful results
about semigroups and monoids. Here's one: a monoid can contain only
one identity element. That is, if e1 and e2 are both identities in the same
monoid, then it must be the case that e1 = e2.

Show why this is true. (Hint: consider e1 ⊗ e2, where ⊗ is the monoid
operator.)

6. Define your own version of the function filter without using the built-
in Python function with that name. Make your function return a tuple.

7. The functions map and filter are actually special cases of reduce. Define
versions of map and filter using reduce instead of iteration or recursion.

8. Define a higher-order function big that takes a function and an identity
element as arguments, and produces a one-argument function that acts
like a "big" version (Section 6.2) of the given function. For example, if
the function plus is defined as in Section 6.4, the value of big(plus,0)
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will be a function that takes a sequence (tuple, list, etc.) of numeric values
and returns their sum.

9. Define a version of the function reduce that has only two parameters and
omits the third, initial. Use the first element of the sequence as the
starting element instead. Your function will be usable only on sequences
of at least one element; if a sequence contains only one element, the
function will return that element.

This is an appropriate reduction operation for a semigroup that is not a
monoid and so does not have an identity element to use as an initial value.

10. Suppose that we have a function reverse that reverses a sequence, so that
reverse((1,2,3)) is (3,2,1). A student suggests that we can define
reduceRight simply by reversing the sequence and applying reduce, and
reversing the result back, like this:

def reduceRight(f,sequence,initial):
return reduce(f,reverse(sequence),initial)

What is wrong with this solution? Under what circumstances will this
version of reverseRight give an incorrect result?

11. Rewrite the second script of Section 1.2, the script that displays the email
address of John Davis, in a single Python expression.
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Chapter 7
Streams
7.1. Dynamically-generated sequences

Some sequences of data are static data structures, like the strings and tuples
and lists of Python. A “static” sequence may be mutable, like a Python list,
but at any one time it exists as a complete data structure. Some sequences, on
the other hand, are generated dynamically.

An input stream, for example, appears to a program to be a sequence of values
— lines, characters, numbers from sensors, whatever they may be — that are
not present all at once, but appear dynamically over time. Some input streams
don't even have an end: the data keeps coming indefinitely.

Let us use the term stream for any dynamically-generated sequence of values.
So sequences are of two kinds: static sequences and streams.

In Python, streams are generated by two kinds of objects that we have seen:
iterators and range objects. A range object is not quite the same as an iterator:
there are a few more things that you can do with it. For example, you can
apply the len function to a range object but not to an iterator. But, for our
purposes, range objects are sufficiently similar to iterators that we will seldom
need to distinguish between them. Except where we specifically mention that
range objects are different, what we say about iterators hereafter will apply
to range objects as well.

The most common way to invoke an iterator is with a for-statement:

for name in iterator :
statements

Here's a familiar example (Example 1.1); you'll remember that the open

function returns an iterator.
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file = open("names")
for line in file:

if line.startswith("John"):
print(line)

By the way, what happens when the value after the “in” isn't an iterator, but
is a static sequence, as in this example?

for place in ("London", "Paris", "Istanbul"):
print("Hello from " + place + "!")

Here's what really happens: Python constructs an iterator to generate values
from the sequence, and the for-statement uses that iterator, invoking it over
and over until it returns no more values.

As we saw in the previous chapter, Python has a construct — the generator
expression — that looks like it would be a tuple comprehension but that
instead generates a sequence dynamically. In other words, a generator
expression generates a stream.

A generator expression has the same syntax as a list comprehension but with
parentheses instead of square brackets on the outside, like this:

( line[5:] for line in open("names")
if line.startswith("John ") )

The value of a generator expression is an iterator. As we have seen, an iterator
is an object, and we can bind a name to it, pass it to a function, and so on.

This particular generator expression is interesting: it is defined using another
iterator, the one returned by the open function. In fact, it is rather common
for iterators to be defined using other iterators, as we will see. Watch what
happens when we use this one.

surnames = (line[5:] for line in open("names")
if line.startswith("John "))

for s in surnames:
print(s)

The generator expression is evaluated, creating an iterator, and the name
surnames is bound to that iterator. The for-statement invokes surnames for
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values one at a time. Each time, surnames invokes the opened-file iterator to
get another line, causing a line to be read from the file and bound to line;
then line[5:] is computed and bound to s, and the body of the for-statement
is executed.

By the way, what happens if we try to use the same iterator a second time?

surnames = (line[5:] for line in open("names")
if line.startswith("John "))

for s in surnames:
print(s)

for s in surnames:
print(s)

The second time, the iterator generates nothing! When we take a value from
an iterator, it is as if the value is “consumed”. A for-statement, since it iterates
over all values that the iterator generates, leaves the iterator “empty”.

7.2. Generator functions
Python has one more construct for generating sequences dynamically: the
generator function. This is a function that returns an iterator. We have already
seen one such function: the built-in function open that opens a file and returns
an iterator that generates strings from the lines of the file. Now we'll see how
programmers can define their own generator functions.

A generator function yields a value by executing a yield-statement, which has
this form:

yield expression

Python treats any function definition that contains a yield-statement as defining
a generator function instead of an ordinary function. Here is an example of
a generator function:
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def fibs(n):
a = 1
b = 1
for i in range(n):

yield a
a, b = b, a + b

The function fibs generates a sequence of length n, in which the first two
values are 1 and 1, and each remaining value is the sum of the previous two
values. This is the well-known Fibonacci sequence. For example, for fibs(7)
the sequence is 1, 1, 2, 3, 5, 8, 13.

When a generator function is called, Python does not execute the function
body; instead, it returns an iterator that will execute the function body. When
this iterator is invoked for its first value, the iterator starts executing the
function body. When execution reaches a yield-statement, the iterator delivers
the value of the expression in it, as one value in the sequence that the iterator
is generating. Then execution of the function body is suspended just after the
yield-statement.

When the iterator is invoked for another value, execution of the function body
is resumed from where it was suspended, with all bindings as they were, as if
control had never been transferred away from the function. The function body
continues its computation, perhaps to yield more values. The iterator terminates
when the function body terminates, and this terminates the sequence of
generated values.

Let's compare the fibs generator function with similar functions that return
the elements of the sequence all at once in a tuple or list. Here's a version that
constructs a tuple and returns it.

def fibsTuple(n):
result = ( )
a = 1
b = 1
for i in range(n):

result += (a,)
a, b = b, a + b

return result
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But notice the duplicated effort. Recall that result += (a,) means result =

result + (a,). Every time around the loop, the function creates a new tuple,
a copy of result with another value concatenated onto the end. Each tuple
but the last is never used again.

Notice the difference in this function, which creates a list rather than a tuple.

def fibsList(n):
result = [ ]
a = 1
b = 1
for i in range(n):

result.append(a)
a, b = b, a + b

return result

This version will probably be more efficient, since it modifies result in place
rather than creating a whole new data structure each time around the loop.
When n is large the difference may be significant.

Efficiency aside, both fibsTuple and fibsList return sequence objects all in
one piece, whereas fibs returns an iterator that generates a sequence
dynamically. We can picture the difference this way: with either fibsTuple or
fibsList, the code that calls the function “pushes” a value of n to the function
and the function “pushes” a sequence object back.

With fibs, the caller “pushes” a value of n to the function and then “pulls”
values from the function (or, more precisely, from the iterator returned by the
function) as it needs them.

87

Generator functions



Recall the map function that we defined in Section 6.4:

def map(f,sequence):
result = ( )
for a in sequence:

result += ( f(a), )
return result

This implementation of map returns a tuple, in much the same way as fibsTuple
does. It computes a correct result, but it has the same efficiency problem that
fibsTuple has. (Did you notice the efficiency problem when we first presented
this definition of map?)

We mentioned in Section 6.4 that Python has a version of map already defined
as a built-in function. That implementation of map is actually a generator
function, and it works more like this:

def map(f,sequence):
for a in sequence:

yield f(a)

We could include this definition in our own programs in place of the version
that returns a tuple: not only is it simpler and more straightforward, but it is
likely to be more efficient. There is little point, though; we might as well simply
use the built-in map.

Like map, filter and many other Python built-in and library functions that
operate on sequences are actually generator functions. They take either static
sequences or streams as arguments and produce streams as results.
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Just like any other function, a generator function can do more complex
computations than those in the simple examples that we have seen so far.
Furthermore, a generator function can contain yield-statements in more than
one place, to combine the results of more than one computation into a single
dynamically-generated sequence. Here is an example.

The generator function combinations, in Example 7.1 below, takes a non-
negative integer n and a sequence of different values, and generates all possible
combinations (as tuples) of elements from the sequence taken n at a time.
There are three cases:

• If n = 0, there is only a single result, the empty tuple.

• If n > 0 but the sequence is empty, there are no results. (The Python
statement pass is merely a place-holder that does nothing.)

• Otherwise, the function recursively generates combinations of two kinds:
the combinations that do not include the first element of the sequence, and
then the combinations that do.

Example 7.1. Combinations using a generator function
def combinations(n,seq):

if n == 0:
yield ()

elif len(seq) == 0:
pass

else:
first = seq[0]
rest = seq[1:]
for a in combinations(n, rest):

yield a
for a in combinations(n-1, rest):

yield (first,) + a

Take a close look at the code and make sure you see how it works and why
it produces the correct result, especially in the recursive cases. Notice that
each recursive call works its way closer to a basis case, either because the
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parameter n becomes closer to zero or because the parameter seq becomes
shorter.

This computation is a fine example of one that is much easier to do using
recursion than with iteration. Try to find a solution using only iteration and
see for yourself.

7.3. Endless streams
Using generator functions it is easy to define streams that never end. Here is
a simple example: the function endlessStream takes any value as an argument,
and generates an endless stream of repetitions of that value.

def endlessStream(x):
while True:

yield x

Here is another example. The function integers generates successive integers,
starting from a given initial value.

def integers(n):
while True:

yield n
n += 1

Again, the stream generated by the function can continue forever, or at least
until n becomes too large for Python to store. For all practical purposes, we
can consider the stream endless.

We'll use the word “endless” rather than “infinite” to describe streams that
never end, to avoid giving the impression that we are somehow computing
with objects of infinite size. Doing that isn't possible in computing as we know
it, of course. An endless stream of the kind that we can generate in a Python
program is simply a sequence that we can take elements from indefinitely,
without limit.

It is obvious that endlessStream generates an endless stream. In general,
though, it may not be obvious from the definition of a generator function
whether the stream that it generates is endless or not.
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Sometimes termination depends on circumstances external to the program.
For example, here's a generator function that yields lines from the program's
input, perhaps coming from a person typing at a keyboard. (The built-in
function input returns the next line from the input, without the terminating
“new line” character.) The first empty line terminates the stream generated.

def inputLines():
while True:

line = input()
if line == "":

return # the stream terminates
else:

yield line

We can't tell by looking at this code whether this generator function will ever
terminate. It is entirely under the control of the program's user, not the
program.

Even when termination is entirely under the program's control, it is sometimes
difficult, or even impossible, to tell whether a stream will terminate. Here's a
simple example.

Consider the following simple algorithm, which is sometimes called the Collatz
algorithm after the mathematician who proposed it. Start with any positive
integer n. Then repeatedly do the following:

• If n is even, divide it by 2.

• Otherwise, multiply it by 3 and add 1.

Stop when and if n reaches 1.

Here is Python generator function that implements the Collatz algorithm,
generating the stream of values that n takes on for a given starting value.
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def Collatz(n):
yield n
while n != 1:

if n % 2 == 0:
n = n // 2

else:
n = 3*n + 1

yield n

For example, with a value of 3 for the argument n, the stream generated is 3,
10, 5, 16, 8, 4, 2, 1.

Believe it or not, as this book is being written in 2014 it is still an unsolved
mathematical problem whether the Collatz algorithm terminates for any initial
value of n. The sequence has terminated for every n ever tried, but no
mathematician has been able to prove that it will terminate for any n.

Termination of computations is an important question in computer science
theory, as you will see later in your studies if you are a computer science
student. Here, let's just say that it can be difficult or impossible to determine
whether an algorithm will always terminate, given a description of the
algorithm. This is just one of the many reasons that programming can be
challenging.

7.4. Concatenation of streams
Although streams are dynamically generated and may be endless, in some
ways they behave much like any other sequences. Let's look in particular at
the behavior of streams under concatenation.

Let us define the concatenation of two streams X and Y as another stream,
generated in the obvious way: by first generating the elements of X and then
generating the elements of Y.

Here is a Python generator function that directly implements that definition:
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def concat(X,Y):
for a in X:

yield a
for b in Y:

yield b

By the way, notice that concat is automatically overloaded for any kind of
sequence that a for-statement can iterate over: strings, tuples, lists, range
objects, and iterators. The function can concatenate two streams, or two static
sequences, or one of each. But notice also that each for-loop uses an iterator
to iterate over X or Y, whether or not the object is already an iterator. So concat

is always concatenating two streams in any case. And it always produces a
stream, not a static sequence.

What does concat(A,B) mean if A generates an endless stream? The result is
still perfectly well-defined; it just never includes any values from B. Then
concat(A,B) is equal to A; that is, the two expressions generate identical
streams.

Well, then, is this concatenation operation associative? Certainly it is. It's not
hard to see that concat(A,concat(B,C)) = concat(concat(A,B),C) for any
streams A, B and C, endless or not, as follows.

If all of A, B and C generate sequences that end, then the value of the expression
concat(A,concat(B,C)) is the values generated from A followed by (the values
generated from B followed by the values generated from C). Similarly, the value
of concat(concat(A,B),C) is (the values generated from A followed by the
values generated from B) followed by the values generated from C. But here
"followed by" is ordinary concatenation of finite sequences, which is
associative.

If A generates an endless stream, then concat(A,concat(B,C)) is equal to A

regardless of B and C. But then concat(concat(A,B),C) is equal to concat(A,C)

regardless of B, and so it is equal to A regardless of C; thus
concat(A,concat(B,C)) = concat(concat(A,B),C). And it is easy to check
similarly that the equality holds in the other cases: when B generates an endless
stream but A does not, and (trivially) when only C generates an endless stream.
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Another way to see that concat is associative is as follows. Notice that, when
E is a call to a generator function, the for-statement

for e in E:
yield e

is just equivalent to the code in the body of the generator function, with
arguments to the function substituted into that code appropriately. In effect,
the code of the function yields values and the for-statement just passes those
values through.

Therefore, the expression concat(A,concat(B,C)) is equivalent to the
concatenation of two code sequences:

for a in A:
yield a

for b in B: # all this is
yield b # the meaning

for c in C: # of
yield c # concat(B,C)

Similarly, the expression concat(concat(A,B),C)) is equivalent to the
concatenation of two code sequences:

for a in A: # all this is
yield a # the meaning

for b in B: # of
yield b # concat(A,B)

for c in C:
yield c

But these two segments of code are clearly equivalent. They must produce the
same result, whatever that may be.

So concat is associative. Furthermore, it has an identity: the empty stream.
Look at the definition again:
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def concat(X,Y):
for a in X:

yield a
for b in Y:

yield b

If X generates the empty stream, the first for-statement terminates immediately
without yielding anything and the second for-statement generates whatever Y
generates, so concat(X,Y) is equivalent to just Y. Similarly, if Y generates the
empty stream, concat(X,Y) is equivalent to X.

So the empty stream is an identity for concat. There is only one empty stream
value, although there are many objects that will generate it: the empty string,
the empty tuple, any generator function that terminates without yielding
anything, and so on. The streams generated by all of these are indistinguishable
in Python.

The conclusion: streams are a monoid under concat, with the empty stream
as identity. By now you should not be surprised at seeing another monoid!

7.5. Programming with streams
Like functional programming, programming with streams gives you a new
collection of techniques for you to add to your repertoire. In this section we'll
explore a few of them.

Whenever you need to do a computation that generates a sequence of values
so that another computation can iterate over that sequence, think of making
the first computation generate a stream. Then you can put that computation
into a generator function.

For example, generator functions are handy for generating a sequence of values
from an object, where the object contains the values we want but is structured
differently. Say that we want to do a computation on every character in a file.
As we have seen, a file in Python is a sequence of lines, each of which is a
sequence of characters. What we want is a different structure: just a sequence
of characters.
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Here's a generator function that generates that sequence as a stream. The
function takes the name of a file as its argument.

def chars(file):
for line in file:

for char in line:
yield char

Then we might do the main computation something like this:

f = open(someFileName)
for char in chars(f):

main computation using char

Here's a slightly more complicated example. Suppose now that the file is a
text file, and suppose that we want to produce a sequence of the words in the
file. This is a structure that is quite different from the structure of the file itself.

We can use the Python method split to separate each line of the file into
words. When split is applied to a string but called with no other argument,
it splits the string at “white space”: that is, sequences of space characters and
“new line” characters (and other characters that we don't need to consider in
this example, such as tab characters). That's how we would normally divide
a line of text into words.

Let's also say that we need to produce the words without any punctuation
marks that might be clinging to the beginning or end of them: commas,
quotation marks, and so on. Python has another string method that will do
this. If punctuation is a string containing the punctuation characters that we
want to strip away, the value of word.strip(punctuation) is word with all
instances of those characters stripped from the beginning and end. (By the
way, strip treats the characters in punctuation as a set; the description of
strip in the official Python documentation uses that term.)

Now there's one more complication: if there is white space at the beginning
of the line, split will produce an empty string in the sequence of “words”
that it produces, and we don't want that effect. The same is true for white
space at the end of the line, and there will always be at least one “white space”
character there, the “new line” character. As it happens, we can use strip to
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solve this problem too: when called with no arguments other than the string,
the method strips “white space” characters.

So here's a generator function that generates a stream of the words in a file.
This time we'll put the file-opening operation in the function too, so that the
function takes a file name as its argument.

def words(fileName):
punctuation = ".,:;'" + '"'
file = open(fileName)
for line in file:

words = line.strip().split()
for word in words:

yield word.strip(punctuation)

As in the previous example, we might do the main computation something
like this:

for word in words(someFileName):
main computation using word

Let's see how the code of this example might look if we wrote it without the
generator function, and combined everything into one big nested loop:

punctuation = ".,:;'" + '"'
f = open(someFileName)
for line in file:

words = line.strip().split()
for word in words(f):

strippedWord = word.strip(punctuation)
main computation using strippedWord

This works just as well, but it doesn't seem as elegant or clear. The main
computation, which may itself be rather long, is buried in all the clutter of
finding words and stripping punctuation. If all that detail is separated out into
a generator function, the part of the program that uses that function can
concentrate on the computation that uses the sequence of words.

By definition, streams are generated dynamically, one element after another
in time. In fact, the elements of a stream don't necessarily appear at equal
intervals in time. Consider the generator function inputLines from Section 7.3,
for example. Here it is again:
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def inputLines():
while True:

line = input()
if line == "":

return # the stream terminates
else:

yield line

This function generates lines at times that are completely unpredictable, from
the program's point of view, assuming that the lines come from a human
typing at a keyboard.

Suppose that we want to store input lines typed in that way, but also record
with each line the time at which it was entered.

We'll need a way of getting the current time from inside a program. The Python
library has a number of functions for getting and operating on times in different
formats, but we don't need to concern ourselves with the details of those
functions here. Let's just assume that we have a function time() that returns
the current time, in an appropriate format and with sufficient precision for
our purposes.

Then here is a function that generates a stream of two-element tuples, each
tuple being the time at which a line was entered and the line itself.

def timedInputLines():
for line in inputLines():

t = time()
yield (t, line)

This is simple code, but the interesting point about it is the way events unfold
in time. Recall that code that uses timedInputLines will call it to get an iterator
and then "pull" values from that iterator as it needs them. Whenever the code
tries to pull a value, timedInputLines can't yield a value until it executes the
body of its for-statement one more time. That causes the for-statement to try
to pull one more value from inputLines. And inputLines can't yield a line
until the user has entered one. All this code will sit waiting, if necessary, for
that to happen.
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As soon as the user has entered a line (assuming that the line is nonempty),
inputLines immediately yields it, which causes timedInputLines to execute
the body of its for-statement again. Then t gets a time, which is close enough
(we hope) to the time at which the user entered the line, and timedInputLines

yields a tuple back to the code that invoked it.

Computations can use more than one stream at a time. Here's an example:
Python has a built-in function called zip that takes two static or dynamic
sequences X and Y and generates a stream containing elements from X and
Y paired up, in two-element tuples. For example, the value of
zip((1,2,3),("a","b","c")) is the stream (1,"a"), (2,"b"), (3,"c").

The stream produces by zip terminates when either X or Y terminates. This
means that the stream still terminates when either X or Y is endless but the
other is not, and this fact leads to some interesting uses for endless streams.
For example, we can number the elements in a sequence by zipping them with
the stream produced by the function integers. If y has the value
("a","b","c","d"), then the value of zip(integers(1),y) is the stream
(1,"a"), (2,"b"), (3,"c"), (4,"d").

Here's an application of that technique. Recall the example in Section 1.2 that
processed a file of temperature observations. Suppose we need code that finds
all the values in the file observations that exceeded some given value, say
threshold. And suppose we don't want just the values: we want each value
paired with the position in the file (as a line number) at which it was found.
It's not hard to imagine how you would produce this data using ordinary
code, with for-statements and if-statements and so on, but let's do it with
streams in a functional-programming style.

As we have seen, map(int,open("observations")) converts a stream of lines
from the file to a stream of integer observations . We zip that stream with a
stream from integers(1), to pair each observation with its position in the
file, and then filter the resulting stream of pairs. Here's all that code as a single
expression:

filter(lambda a: a[1] > threshold,
zip(integers(1),

map(int,open("observations"))))
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We can picture the various streams in this expression as pipes through which
values flow from one function to the next, something like this:

Now let's see how we would write a zip function ourselves if Python didn't
already have one. As it happens, the built-in zip can zip together any number
of sequences, but let's just handle the case of two sequences. So in the definition
of zip(X,Y) we'll want to iterate over X and Y at the same time and generate
the first element of X paired with the first element of Y, then the second element
of X paired with the second element of Y, and so on.

We immediately run into a difficulty: how do we do the iteration in Python?
We'd like to say something like "for each x in X and for each y in Y at the same
time", but Python doesn't have a construct for doing such a thing. If X and Y

are static sequences, we can get their corresponding elements by using
subscripting — say, X[i] and Y[i] for successive values of i — but Python
doesn't let us do subscripting on streams.

Python does give us a built-in function, called next, that we can call repeatedly
to get successive elements of a sequence. The function is called like this:

next(iterator, endMarker)

Here the argument iterator is an iterator that generates successive elements
of the sequence that we are interested in. As we have seen, a for-statement
creates such an iterator automatically if the sequence object is not already an
iterator, but to use next we must create the iterator explicitly. This is done
using the function iter, which we can use like a type-conversion function,
similar to int and tuple and so on. If X is any static sequence or stream object,
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iter(X) is an iterator for X. It is the same as X if X is already an iterator, so we
can omit using iter if we are sure that this is the case; otherwise we must use
iter, even if X is a range object.

The argument endMarker is any distinguished value for next to return to signal
that there are no more elements in the sequence; that is, when iterator

terminates. Of course, endMarker must be different from any value that might
be in the sequence. Python programmers often use the value None. It's a special
value, having a type of its own, that represents "no value"; that is, lack of a
value of any other kind.

So here's the pattern of code that we'll use to iterate over a sequence X using
next instead of a for-statement: we'll create an iterator using iter(X) and bind
it to (say) it, then pull values from that iterator using next(it,None) until we
get the value None.

And now let's write a definition for zip(X,Y). We could use next to iterate
over both X and Y, but it's a little easier to use a for-statement to iterate over
X and work an iteration over Y into that for-statement. Here is one way to do
it. Let's assume that we know that None can't be one of the values in Y.

def zip(X,Y):
it = iter(Y)
for x in X:

y = next(it, None)
if y == None:

return
else:

yield (x,y)

See how zip terminates when X ends (because the for-statement terminates)
or when Y ends (because y becomes None and the return statement is executed),
whichever comes first. But if both X and Y are endless, so is the result of zipping
them.

Just as we can (in effect) convert a static sequence to a stream by using the
iter function, we can convert a stream to a static sequence by using tuple or
list. Either of these type-conversion functions, when applied to a stream,
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forces the stream to yield all its values at once to be packaged into a static
structure. Let us call this process materializing the stream.

Why would we ever want to materialize a stream? Perhaps to do some
operation that Python allows on static sequences but not on streams. One
such operation is subscripting. Another, if we convert the stream to a list, is
modifying an element in place. We would also probably want to materialize
a stream if we intend to iterate over its values more than once.

Of course, we must beware of trying to materialize a stream that is endless or
may be endless. For example, if we try to evaluate list(integers(0)), the
stream returned by integers(0) will not terminate, and so neither will the
computation in the list function that tries to materialize the stream. Or, if
we try to evaluate tuple(inputLines()), the tuple function will not be able
to finish its materializing unless and until the user has typed an empty line.
The program will sit and wait until then; it won't be able to process input
lines interactively as the user types them.

If we know, or can compute, how many elements of an endless stream we will
need, we can always materialize just that many elements. For example, if we
need just the first n elements of an endless stream, we can generate a stream
of just those elements (see, for example, Exercise 2 at the end if the chapter)
and convert the result to a tuple or a list of length n.

In many computations, though, there is no need ever to materialize a stream
or a part of it, whether or not the stream is endless. A computation can iterate
over the stream directly and control how much of the stream to use, as in our
definition of zip.

Thus, in many contexts, endless streams are nothing special. In fact, sometimes
we can get the simplest code by making our generator functions generate
endless streams rather than streams that terminate, letting the code that uses
the generator functions determine how much to use.

Here's an example. As we saw earlier in this section, we can number the
elements of a sequence by using zip on that sequence and a stream generated
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by integers. Suppose S is a stream. Then to number its elements starting from
0, we could write

zip(integers(0), S)

As we know, integers(0) generates an endless stream of integers starting
from 0. Now recall that range(n) also generates a sequence of integers starting
from 0, but only n of them. If we insisted on avoiding endless streams, we
could use range instead of integers, but then we would need to compute the
length of S in advance. And to do that we would need to materialize S first.
The resulting code would look something like this:

zip(range(len(tuple(S))), S)

Not only is this code more complicated and probably less efficient, it won't
even work if S can't be materialized.

7.6. Distributed processing
As we saw in Section 6.6, parallel processing is making its way into the
computer systems that we use every day. But a similar form of processing has
been part of our daily lives for years: distributed processing, in which
computations on separate computers communicate with each other and
collaborate to produce a larger computation. We use distributed computing
every time we interact with the Internet and the Web, which create a computing
environment that acts like a single computer with millions of processors.
Applications like Web searching and multiplayer games can easily be single
computations distributed over computers all around the globe.

Distributed computing is often described as being based on “message-passing”:
for example, computer A sends a message to computer B requesting data, and
computer B sends a message back containing the data. But in fact much of the
communication in distributed computing is actually based on streams, rather
than single messages. For example, computer B may be a server that receives
a stream of requests and iterates over that stream, much as in the examples
in this chapter, responding to each request. Or the data returned in response
to a request, unless it is very small, is likely to be broken into a stream of
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“packets”, and computer A will iterate over that stream. Some streams of data
are potentially endless, as in audio and video streaming and RSS feeds.

Many computations are distributed simply because data is created or stored
in one location but is needed in another. But another reason for distributing
a computation is to apply the power of several computers, or even many
computers, to a single problem.

Should we always distribute computations if we can? Absolutely not; it depends
on the computation, and we should avoid using distributed computing for
computations that are not suited to it. Transferring data from one computer
to another over a network is a comparatively slow process, and very slow
compared to the speed of computation on any one computer. So, even if many
computers are available to help with a computation, it makes no sense to
transmit large amounts of data to each computer if each computer will do
only a small amount of computation on that data.

If each remote computer already has its own data, distributed processing may
make more sense. For example, consider a computation on files or web pages
that are spread throughout a network. Each computer can do its own searching
and aggregating of the data that resides on its own file system, perhaps by
using operations like map and filter and reduce, and then send a relatively
small quantity of data back to a central computer for aggregating similarly
into a final result. Or the aggregating can be done in stages, as with the
reduction by ⊗ of a0 … a7 that we saw in Section 6.6. Some computers can
serve as intermediate aggregators, collecting and aggregating data from several
other computers and sending the results on to another computer to be
aggregated further.

Again, a bit of mathematical reasoning can help us design this kind of
distributed computation for maximum efficiency. For example, if the operation
of aggregation is associative, we have more freedom to distribute the operation
among machines and do the operation on parts of the data in parallel. We
have even more freedom if the operation is commutative; then, for example,
an aggregating computer would be able to process results from other computers
in whatever order the results may arrive.
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Terms introduced in this chapter
yield-statementstream
materializegenerator expression
distributed processinggenerator function

Exercises
1. Experiment with the fib, fibsTuple and fibsList functions of Section 7.2.

Try to find a value of n for which fibsTuple(n) takes noticeably longer to
run than fib(n) or vice versa. Repeat with fibsList and fib. If your
computer system gives you a way to measure how long a Python program
takes to run, use that; otherwise, just run the Python interpreter interactively
and observe.

2. Write a generator function prefix(n,stream) that yields the first n elements
of a stream, or the whole stream if its length is less than n. Your function
should work whether or not the stream is endless, so materializing the
stream first is not a solution.

But notice that the stream that prefix returns is not endless in any case,
and so it can be materialized if desired.

3. Look again at the integers generator function of Section 7.3. Are we really
justified in saying that integers generates an endless stream? Consider your
answers to the first two exercises of Chapter 2.

4. What is the value of each of the following expressions? Be precise in your
answers; distinguish between streams and other kinds of sequences, for
example. Write code that evaluates the expressions to show that your
answers are correct. Assume that map is the built-in function, that double
is as defined in Section 4.3, and that integers is as defined in Section 7.3.

a. map(double, range(5))

b. map(double, integers(0))
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c. map(integers, integers(0))

5. In the timedInputLines example of Section 7.5, we assumed that all the
code of the example would sit waiting for the user to enter each input line.
What if the input comes faster than the code can consume it? Perhaps the
program is run in such a way that its input comes from another program
rather than from a human at a keyboard, for example. How will
timedInputLines behave?

6. Look again at the averaging-of-temperatures script of Section 1.2. Suppose
we have many weather stations at different sites, each taking its own
temperature measurements. Could we distribute the operation of averaging
to computers at the weather stations, having those computers send their
results back to a central computer that would compute one grand average?
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Chapter 8
Sets
8.1. Mathematical sets

We introduced the concept of a set back in Section 1.3. In this chapter we'll
look at sets in more detail.

Set theory is a central part of advanced mathematics, and set theory can be
used to define the foundations of mathematics itself. Set theory, when done
with complete formality, is an abstract and difficult subject. Here we'll describe
sets much more informally, and concentrate on the concepts of set theory that
are most useful in programming. In the current section we'll briefly and
informally present definitions that we'll need, along with a few interesting
and useful facts about sets.

A set is an unordered collection of different things, which we call the members
of the set. The things can be whatever we wish to talk about in a given context,
such as numbers or names or people or cities. For example, we can define one
set as all the people in your family, and another set as all the odd numbers
less than 100.

In any particular discussion involving sets, we can explicitly define the universe
of discourse, meaning all the things, or “elements”, that can be members of
the sets that we will be talking about; then the set of all these elements is called
the universal set. Sometimes, though, we let the universe of discourse be defined
implicitly by the things that we happen to talk about, and we don't use the
idea of a universal set at all.

In mathematics, the universe of discourse often includes sets themselves, as
well as tuples and other composite mathematical objects. If so, sets can contain
other sets, as well as tuples and so on.
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A set is defined by its members. We consider two sets equal if they have exactly
the same members.

We can define a set in several ways. Here are three of the ways:

• By explicitly listing its members. To indicate that a collection is a set, we
use curly braces, so that the set of the numbers 1, 3, and 5 is written

{1, 3, 5}

• By giving a property that the members have. An example is “the set of odd
positive numbers less than 100”. We could express that phrase as

{ n │ 0 < n < 100 and n is odd }

Here the vertical bar “│” is read as “such that”.

The property selects members from some larger “base” set. That set may
be given explicitly as part of the definition:

{ n │ n is an integer and 0 < n < 100 and n is odd }

Or the base set may be left implicit; it may be defined by context, or we
may be meant to assume that it is the universal set.

• By forming the set from other sets using operators, like the union,
intersection, and difference operators that we will define below.

There is a set with no members, called the empty set, written ∅ or sometimes
{ }.

If an element a is a member of set S, we write a ∈ S. If it is not, we write a ∉ S.
For example, 1 ∈ {0, 1, 2} and 1 ∉ {2, 4, 6, 8}.

If every member of a set A is also a member of another set B, we say that A
is a subset of B, written A ⊆ B. For example, {2, 4} ⊆ {1, 2, 3, 4, 5}. But notice
that, by our definition, it is also true that {2, 4} ⊆ {2, 4}; in fact, any set is a
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subset of itself. If we want to say that A ⊆ B but A ≠ B, we say that A is a
proper subset of B, written A ⊂ B.

The union of two sets A and B is written A ∪ B, and is another set containing
all the elements that are in either A or B or both.

The intersection of two sets A and B is written A ∩ B, and is another set
containing all the elements (if any) that are in both A and B.

The difference of sets A and B is written A − B, and is another set containing
all the elements that are in A but are not in B. (It is also sometimes called the
“complement” of B with respect to A, and written A \ B.) For example, {1, 2,
3, 4, 5} − {2, 4, 6} is {1, 3, 5}.

Both union and intersection are associative: A ∪ (B ∪ C) = (A ∪ B) ∪ C and A
∩ (B ∩ C) = (A ∩ B) ∩ C. Both operators are commutative as well. These facts
are not hard to prove; in fact, they follow directly from the fact that we defined
union and intersection using “or” and “and”, and the fact that the latter
operators are associative and commutative in logic.

The empty set is the identity for the union operation; therefore, sets are a
monoid under union, with the empty set as identity. If there is a universal set,
it is the identity for the intersection operation; then sets are a monoid under
intersection, with the universal set as identity. If we have no universal set, sets
are still a semigroup under intersection.

In mathematics, sets are often infinite in size; that is, they have infinitely many
members. For example, mathematicians routinely use the set of all integers
and the set of all real numbers. Most of the interesting facts and problems in
set theory concern infinite sets.

Furthermore, mathematicians often define sets by giving a property that the
members satisfy, but without showing any way to find those members. For
example, such a set can be the set of solutions to an equation, like the following
set:

{ x │ x2 - 5x + 6 = 0 }
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Anyone who knows a little algebra knows a method for finding the members
of that set, but the definition of the set doesn't tell you the method. Here's
another example:

{ (a,b,c,n) │ a and b and c are positive integers, n is an integer greater
than 2, and an + bn = cn }

It is not obvious how to find members of this set, if there are any. In fact, until
recently no one knew whether this set was empty, nonempty but finite, or
infinite; but the mathematician Andrew Wiles proved in a 1995 paper that
the equation has no solutions with the given properties, so we now know that
the set is empty. (This was the problem of “Fermat's Last Theorem”.)

Compared to mathematicians, we as programmers face obvious limitations
on how we can use sets. First, we can't construct infinite sets in our programs.
Second, as we noted back in Section 2.3, we must avoid trying to construct
sets that are finite but far too large to store in our computers. And, finally, to
create a set in a program, we must know a method for constructing it. Even
with these limitations, there are plenty of uses for sets in programming, as we
will see.

8.2. Sets in Python
Like tuples and lists, sets in Python are data structures that can contain other
Python values. The Python term for such a structure is container; Python has
one more kind of container built into the language, the dictionary, which we
will see in Section 9.2.

A Python set, like a static sequence or a stream, is an object that we can iterate
over using a for-statement to do something with every member of the set. Any
such object is called an iterable in Python terminology.

We can construct a set using a set display, which has the same form as a list
display except with curly braces instead of square brackets on the outside.
The form that explicitly lists the set's members is just like the mathematical
notation:
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{ 1, 3, 5 }

The other kind of set display is a set comprehension, which looks like a list
comprehension except with curly braces instead of square brackets on the
outside. Here's an example, which is one way to construct the set of odd
positive numbers less than 100:

{ n for n in range(100) if n % 2 == 1 }

A set comprehension is the Python way to construct a set by giving a property
that its members have. In Python we can't just state the property, though; we
must start by building another set or other iterable — range(100) in this case
— and then select from it the values with the desired property.

We can also construct a set from a collection of values by using the set type
conversion function, writing set(A) where A is any iterable. (Now that we
have the term “iterable”, we can say that any iterable can also be an argument
to the type-conversion functions tuple and list.) As a special case, the form
set() constructs an empty set.

Python has equivalents for all the set operators that we defined in the previous
section. Here is a table of them:

Table 8.1. Set operators

Pythonmath

in∈is a member of

not in∉is not a member of

<=⊆subset

<⊂proper subset

|∪union

&∩intersection

-−difference

Python treats the two-word sequence not in as a single operator. The operators
| and & don't look much like the corresponding mathematical operators, but
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perhaps you can remember what they mean if you think of them as meaning
“or” and “and”; we used those words in our definitions of union and
intersection.

Perhaps surprisingly, in Python we can't use {} to denote the empty set. This
is because {} denotes an empty dictionary. It would probably make more sense
for {} to denote an empty set instead, but Python had dictionaries before it
had sets, so the meaning of {} is historical. To construct an empty set we must
write set().

In Python there is no way to construct a universal set of all possible Python
values. Furthermore, in most programming situations, if there is a “universe
of discourse” it is either infinite or so large that constructing a universal set
from its values would be impossible: imagine the set of all Python strings or
the set of all Python integers, for example. But if all the set members in some
context in your program are values taken from some rather small finite set,
you may be able to use that set as a universal set.

Like lists, Python sets are mutable. Like the append method for lists, there is
a method add that inserts a value into a set. For example:

setA = { 2,4 }
setA.add(3)

After those statements are executed, setA contains the values 2, 3, and 4. If
3 had already been in setA, the second statement would have had no effect.

Python has other methods and functions that operate on sets; we'll mention
just two more here. For a set A and a value x, the statement A.discard(x)

removes x from A; if x is not in A, the statement has no effect. And the function
len can be applied to sets as well as sequences: len(A) is the number of
elements in A.

As in mathematics, sets in Python are unordered. This means that if you iterate
over a set, you will get all the members, but in no particular order. For
example, if you execute these statements:
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cities = { "London", "Paris", "Vienna", "Istanbul" }
for place in cities:

print(place)

you might see this:

Paris
London
Istanbul
Vienna

or you might see the names of the cities in a different order.

Python sets are designed to make testing for membership particularly efficient.
This is fortunate, because Python must use membership testing not only to
do the in and not in operations, but also to do intersections and unions. To
evaluate A & B, Python does something like this: it tests each member of A to
see whether it is also in B. Similarly, to evaluate A | B, Python does something
like this: it starts with the members of A and then tests every member of B,
adding the member to the result only if it is not in A.

Python uses a technique called hashing to implement sets. The details of
hashing are beyond the scope of this book, but let's just say that hashing
involves using the value of an object to compute the object's location in a data
structure. Therefore, to see whether a value is a member of a set, Python simply
does the hashing computation to see whether there is an object with that value
at the corresponding location. If the set is large, this computation is much
faster than comparing the given value with each member of the set.

But, once an object is in a set, the object's value can't be allowed to change,
since then the value and the object's location in the set wouldn't correspond.
Therefore, a Python set can contain only immutable objects. In particular, a
set can't contain a list.

Similarly (and unfortunately), a Python set can't contain another Python set.
Fortunately, Python has another kind of data structure called a “frozen set”:
it behaves like a Python set except that it is immutable. We have seen that
tuples behave like lists except that tuples are immutable; the relationship
between sets and frozen sets is the same.
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To construct a frozen set, we use the type conversion function frozenset; its
argument can be a set, or any other collection of values such as a sequence.
To construct an empty frozen set, we write frozenset().

So by converting a set into a frozen set, we get a structure that we can include
in another set. For example, in mathematics the combinations of the numbers
{0,1,2} taken two at a time is a set of sets:

{{0,1}, {0,2}, {1,2}}

In Python, we can't write it quite that way: the inner sets need to be frozen.
We need to write something like this:

{ frozenset(c) for c in ((0,1),(0,2),(1,2)) }

8.3. A case study: finding students for jobs
Now let's pause for a short case study, to apply what we have learned so far
to a simple data-processing problem.

Suppose that a company is recruiting students at a university to give them
jobs after they graduate, and suppose that the company wants to interview
fourth-year students who are either computer science or electrical engineering
students and who have a grade average of B or better.

Let's also suppose that the university has data files that will help us find such
students. The file cs contains the names of all the computer science students,
and the file ee contains the names of all the electrical engineering students.
The file year4 contains the names of all the students who are in their fourth
year of study, and the file goodGrades contains the names of all the students
with a grade average of B or better.

Let's see how we can find the names of all the appropriate students. This is a
very easy programming problem, but let's try to find the very best solution
that we can. We'll start by showing how a beginning programmer might
approach the problem, and then show how the solution changes as we apply
progressively more of the ideas that we have seen so far in this book.
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Very early in their programming careers, beginners learn a stereotyped structure
for a program:

1. Read all the inputs.

2. Do the computation.

3. Display the results.

For some programming problems this approach is far too simplistic, but it
will work perfectly well for the current problem.

So let's first consider the task of reading all the inputs. A true beginner might
use another stereotyped strategy: to read all of a file, read lines one at a time
until there aren't any more, using a while-statement with calls to readline

and a test for the empty string, as we saw in an example in Section 3.3.

Insight #1: we don't need to do all that. Reading the file using a for-statement
is much easier, as any reader of this book surely knows by now.

So now one way to proceed is to read lines from a file and collect the names
in a data structure. The first structure to come to mind may be a list, especially
if the programmer is used to programming in a language that isn't quite as
high-level as Python is. So our strategy might be to start with an empty list,
and add each name from the file as we read the lines, like this:

names = [ ]
for line in file:

names.append(line.strip())

Insight #2: we don't need to do all that. This kind of computation is exactly
what a list comprehension is meant for. We can write this instead:

names = [ line.strip() for line in file ]

We can use such a statement to read each of our data files:

year4 = [ line.strip() for line in open("year4") ]
cs = [ line.strip() for line in open("cs") ]
ee = [ line.strip() for line in open("ee") ]
goodGrades = [ line.strip() for line in open("goodGrades") ]
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Insight #3: there's a lot of common computation here, which we can separate
out into a function. Doing this simplifies the code and is generally good practice
anyway. Writing the function is particularly easy in Python, because we can
still use a comprehension and simply let the function return the resulting list.

def listOfNames(filename):
return [ line.strip() for line in open(filename) ]

year4 = listOfNames("year4")
cs = listOfNames("cs")
ee = listOfNames("ee")
goodGrades = listOfNames("goodGrades")

Now that we have all the data in data structures in the program, we can
proceed with the main computation. The statement of our problem asks us
to find “fourth-year students who are either computer science or electrical
engineering students and who have a grade average of B or better”. Here is
one obvious way to translate that requirement into Python:

candidates = [ ]
for student in year4:

if (student in cs or student in ee) \
and student in goodGrades:

candidates.append(student)

Insight #4: we can do the same computation more efficiently using sets. The
computation does most of its work with the in operator, which Python can
do more efficiently on sets than on lists. We'll need to change our code that
reads input so that it creates sets instead of lists, but the changes are obvious
and we'll omit them for the moment.

candidates = set()
for student in year4:

if (student in cs or student in ee) \
and student in goodGrades:

candidates.add(student)

Insight #5: we don't need to do all that. Again, we don't need to initialize a
data structure and then add values to it one at a time: we can use a
comprehension.
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candidates = { student for student in year4
if (student in cs or student in ee)

and student in goodGrades }

Insight #6: we don't even need to do all that. Now that we have all our names
in sets, why not just use set operations instead?

candidates = year4 & (cs | ee) & goodGrades

Our task is to find “fourth-year students who are either computer science or
electrical engineering students and who have a grade average of B or better”.
How could we express the computation any more simply and clearly? And
it's efficient, too.

So, once we put the pieces together and add an obvious for-statement to display
the results of the computation, here is our program. It's short and simple:

Example 8.1. Finding job candidates using set operations
def setOfNames(fileName):

return { line.strip()
for line in open(fileName) }

year4 = setOfNames("year4")
cs = setOfNames("cs")
ee = setOfNames("ee")
goodGrades = setOfNames("goodGrades")

candidates = year4 & (cs | ee) & goodGrades

for student in candidates:
print(student)

For comparison, you might like to write out the program that we would have
now if we had accepted the beginner's solution at each step of the development.
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8.4. Flat files, sets, and tuples
Let us return to the theme of flat files that we introduced in Section 5.3. As
we have seen, many flat files represent sets or sequences of values. Often these
values are simply numbers or strings, as in the case study of the previous
section or in Example 1.1. In each of those programs, the data files contained
names, one name per line, but conceptually each file was a set of names.

More often than not, a program that takes data from such a file will use all
the data in the file. In developing such a program, an obvious first step can
be to write code to get all the data into a data structure in the program. The
function setOfNames in the previous section did just that: it took as a parameter
the name of a file, and returned a set of the names in the file. Here is that
function with a couple of minor changes.

def setOfValues(fileName):
file = open(fileName)
return { line.strip() for line in file }

Here the function has a slightly more generic name, to be suitable for use
when the values in the file are strings of any kind, not necessarily names. (We
might have been tempted to use just the name “set”, but if we did we wouldn't
be able to use the built-in set-constructing function with that name.) We put
the call to open in a separate statement, but we could just as well have included
it in the set constructor, as we did in setOfNames. Recall that in this code, as
in all examples in this book, we omit the code that would handle situations
in which the file cannot be opened.

The function setOfValues constructs a set from the values in the file, but we
can just as easily construct a list:

def listOfValues(fileName):
file = open(fileName)
return [ line.strip() for line in file ]

or a stream:

def streamOfValues(fileName):
file = open(fileName)
return ( line.strip() for line in file )
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or a tuple, constructing a stream and then materializing it:

def tupleOfValues(fileName):
file = open(fileName)
return tuple(( line.strip() for line in file ))

We'll discuss multisets in Section 9.5, and there we'll see what you can do if
you want to treat the data in a file as a multiset, rather than as a set or a
sequence.

Now, what if a data file contains lines that are divided into fields? Let's
consider the common case of CSV files, the “comma-separated values” files
that we saw in Section 5.3.

As with files of single values, we'll often want to read the whole file and put
all of its data into a data structure. For a CSV file, the obvious kind of data
structure is a set, or possibly some kind of sequence, of tuples.

We can split a line into its fields by using the split method:

line.split(",")

So it might appear that we could create the set of tuples that we want using
a comprehension like this:

{ line.strip().split(",") for line in file }

Unfortunately, that solution isn't quite right. It happens that the Python method
split produces a list, not a tuple. And we can't construct a set of lists, because
lists are mutable.

The solution is to convert each list that we get from split to a tuple, and
construct a set from those tuples:

{ tuple(line.strip().split(",")) for line in file }

And here is the obvious function to read a file and give us the set of tuples
that it represents:
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def setOfTuples(fileName):
file = open(fileName)
return { tuple(line.strip().split(","))

for line in file }

Of course, we can just as easily write a function to construct a list, or stream,
or tuple of the tuples that we get from the data in the file. We'll assume that
we have the functions listOfTuples, streamOfTuples, and tupleOfTuples if
we need them; the definitions are obvious.

Once we have the tuples in any of these data structures, we can iterate over
all the tuples using a for-statement. For example, suppose the file directory

is a CSV file in which each line contains a name, a telephone number, and an
email address. We can use code like the following to get each tuple, unpack
the tuple, and then do something with the fields:

directory = setOfTuples("directory")
for entry in directory:

(name, phone, email) = entry
...

We can also incorporate the unpacking into the for-statement's header. A for-
statement binds a name to a value from the stream that it is iterating over,
much as an assignment statement binds the name on its left-hand side to a
value. Python lets us bind the elements of a tuple to a comma-separated
sequence of names, in a for-statement header just as in an assignment
statement:

directory = setOfTuples("directory")
for (name, phone, email) in directory:

...

We can also use the for ( ... ) in ... form in a comprehension. For
example, suppose we have the same file, but we are only interested in the
names and email addresses. Here is one way to construct a set of the
corresponding two-element tuples from the file:

directory = setOfTuples("directory")
emailDirectory = { (entry[0], entry[2])

for entry in directory }
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But the “unpacking” construct lets us give names to the tuple elements, which
makes the intent of the code clearer:

directory = setOfTuples("directory")
emailDirectory = { (name, email)

for (name, phone, email)
in directory }

Using a comprehension with filtering (the “for ... in ... if ...” form)
we can easily select only certain tuples, or certain fields from certain tuples,
as we read the file. For example, consider the example of the previous section
again. Suppose that instead of being given the files cs and ee, we are given a
single file students with the names of all students paired with their major
fields of study, something like this:

John Baez,math
Jude Collins,CS
Joan Denver,CS
Joan Denver,EE
Roberta Dylan,physics
...

A student declaring more than one major field of study would have more than
one line in the file, like Joan Denver above. Thus the file represents a relation
but not a mapping, but we don't care about the distinction in this case.

We can construct the sets cs and ee easily as follows:

students = setOfTuples("students")
cs = { name for (name,major) in students

if major == "CS" }
ee = { name for (name,major) in students

if major == "EE" }

Notice how each comprehension reads easily and has an obvious meaning,
but is also concise and easy to write for the amount of work it does.

We can simplify the code a bit by constructing a single set csOrEE containing
all the computer science and electrical engineering students, instead of the two
sets cs and ee:
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students = setOfTuples("students")
csOrEE = { name for (name,major) in students

if major == "CS" or major == "EE" }

And then we don't need the set-union operation in the main computation. We
can write this instead:

candidates = year4 & csOrEE & goodGrades

Having made those changes, here's one more easy improvement we can make.
Since we aren't going to use the structure students more than once, we don't
need to materialize it as a set at all: we can leave the collection of tuples as a
stream, and we can let the comprehension simply iterate over that stream.

With all these changes, our program might appear as shown in Example 8.2.

Example 8.2. Job candidates again, with different input files
def setOfNames(fileName):

return { line.strip()
for line in open(fileName) }

def streamOfTuples(fileName):
return ( line.strip().split(","))

for line in open(fileName) )

year4 = setOfNames("year4")
csOrEE = { name for (name,major)

in streamOfTuples("students")
if major == "CS" or major == "EE" }

goodGrades = setOfNames("goodGrades")

candidates = year4 & csOrEE & goodGrades

for student in candidates:
print(student)

You can probably see how to adapt the program to other forms that the input
files might have (see Exercise 3, for example).
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8.5. Other representations of sets
Even though Python has sets and a convenient notation for using them built
into the language, we don't need to use a Python set as the representation for
every collection of data that we view as a set conceptually. We have just seen
an example: the names in the file students in the previous section. Conceptually
those names are a set, because we don't care about their order and we don't
expect duplicates. But their representation in the file is as a static sequence,
and as seen by our program they are a stream. Both representations are
perfectly appropriate.

Our representation of a set should depend on the operations that we need to
do with the set or its elements. A representation as a sequence is perfectly
good if all we need to do is to iterate over all elements of the set, as with the
file students and the files of Examples 1.1 and 1.2. We had no need to convert
the data in those files to Python sets.

Python sets are better representations of conceptual sets if the operations will
be testing values for membership or computing unions and intersections. Not
only does Python have convenient and elegant syntax for these operations,
but the operations are implemented quite efficiently by the Python interpreter.

In a programming language without sets and set operations built in,
programmers may need to implement those features themselves. Computer
scientists have invented a variety of data structures for sets and algorithms
for set operations. These are beyond the scope of this book, but if you are a
student of computer science you will probably see them later in your studies.
Fortunately, many programming languages come with ready-made libraries
that implement sets and set operations. The libraries are not as convenient as
the built-in Python features, but they do the job.

But, in Python or in any other language, it may not be appropriate to use such
heavy-duty machinery just because it is available. Here's another example of
an alternate set representation. Suppose that for some particular purpose in
a program we need a set of n different objects or values. The only property
that they need to have is that they are all different. The only operation on
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them will be to test whether one value is the same as another. We won't
construct subsets of them, just use them individually.

It may help us clarify our thinking about the problem to think of the objects
or values as a set while designing the program. But in the implementation, the
best representation of the set members may be simply the integers from 0 to
n-1. The set as a whole might be represented as a Python range object, if we
need to iterate over all the members; if not, there may be no need to represent
the set explicitly at all. What could be simpler?

Terms introduced in this chapter
intersectionmember
differenceuniverse of discourse
containeruniversal set
iterableempty set
set displaysubset
set comprehensionproper subset
hashingunion

Exercises
1. Write a Python function that takes as its argument a nonempty set of file

names; the corresponding files contain names of people, as in the examples
of Section 8.2. Your function will return the set of the names that are in
all of the files. For example, the files may be a teacher's lists of the students
in class on different days, and your function will compute the names of the
students with perfect attendance. Make your code as simple and elegant as
you can.

2. Write a set comprehension that uses an integer value n to produce the set
of different factors of n; that is, the set of integers that divide n evenly, not
including 1 and n itself. Then use this comprehension to define a function
isPrime(n) that returns True if n is prime and False otherwise. An integer
is prime if it has no factors.
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Can you rewrite your isPrime so that it tests only the prime factors of n?
It is easy to see that if n has any factors at all it must have prime factors.
Also, it is also not hard to see that if n has any factors, at least one must
be less than or equal to the square root of n; take advantage of that fact
too to cut down the amount of work that your function needs to do.

Which version of isPrime is more efficient? Experiment by timing both
versions.

3. Write a version of the program of Examples 8.1 and 8.2, assuming that the
inputs are now these CSV files:

• students, in which each line has three fields: a name, a major field of
study, and number of years of study (an integer, 4 for a fourth-year
student).

• grades, in which each lines has two fields: a name and a grade average
(a number that may contain a decimal point, on a scale of 0.0 to 4.0, so
that 3.0 would represent a B average).

If you find that this exercise is almost too simple to bother with, once you
have seen Examples 8.1 and 8.2, perhaps that's the point of the exercise.

4. For what purposes in a program might you need a set of n objects or values
that are all different but need have no other properties, as described at the
end of Section 8.5? Try to think of a variety of examples.
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Chapter 9
Mappings
9.1. Mathematical mappings

We introduced the concept of a mapping in Section 1.3. In this chapter we'll
look at mappings in more detail. As we did with sets, we'll describe mappings
very informally, concentrating on the properties of mappings that will be most
useful to us as programmers.

A mapping is a set of ordered pairs in which no two ordered pairs have the
same first element. Therefore, a mapping associates a specific second element
with each value that is the first element of some ordered pair in the set. In
mathematics, “mapping” is a synonym for “function”, and we can use the
notation of functions to define a mapping. For example, to say “f(3) = 7” is
to say that the ordered pair (3,7) is in the mapping f.

As with sets, there are a number of ways to define a mapping. One way is to
list the ordered pairs explicitly, like this:

{ (1, 1), (2, 2), (3, 6), (4, 24) }

A common variation on this notation uses the operator ↦ to denote each
ordered pair, to emphasize that the first element is mapped to the second:

 { 1 ↦ 1, 2 ↦ 2, 3 ↦ 6, 4 ↦ 24 }

In this notation, each pair a ↦ b is called a maplet.

Mathematicians use a variety of other formal and informal notations to define
mappings. For example, here are three ways to define f to be a factorial
function:

f(n) = n! for all positive integers n
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f = λn . n! for all positive integers n

f = { n ↦ n! for all positive integers n }

For a given mapping f, its domain, written dom f, is the set of values that are
first elements of ordered pairs in the mapping. Its range, written ran f, is the
set of values that are second elements of ordered pairs in the mapping.1 Notice
that, as in the case of the factorial function, the domain and range of a mapping
can be infinite sets.

Sometimes the domain of a mapping is obvious from context. Sometimes,
though, we must specify what the domain is to avoid ambiguity. Take, for
example, the expression “λx . x + 1”. Does it define the successor function
for non-negative integers, or the function that adds 1 to any real number, or
something else? Depending on our choice of domain, we get different functions,
because the sets of ordered pairs are different.

In mathematics as in programming, a function can take more than one
argument. There are two common ways in mathematics to construct such a
function. The first is to define the function as a mapping from a tuple of values
to a single value. Consider, for example, a function that maps two numbers
to their product:

p(x,y) = xy

Then p could be defined as follows, using the maplet notation:

p = { (x,y) ↦ xy }

With this definition, p(x,y) can be interpreted as shorthand for p((x,y)), so
that, for example, p(2,3) = 6 as one would expect.

1In mathematics there are a variety of terms and definitions for these and related concepts, but these
are the definitions that we will use in this book. Be aware, though, that you might see somewhat
different vocabulary in other books.
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The second way to define a function of more than one argument is as a chain
of mappings, each of which maps an argument to a function of the remaining
arguments. Here is how p would be defined in this way:

p = { x ↦ { y ↦ xy }}

A function that is defined as a chain of mappings in this way is said to be
curried, after the mathematician Haskell Curry.2

With this definition, the value of p(x) is the function of one argument that
multiplies its argument by x. Then p(x,y) is interpreted as shorthand for
(p(x))(y) , so that again p(2,3) = 6 as expected.

But notice that, if p is defined as a curried function, p(x) also has a useful
meaning by itself: it is like the Python multiplyBy function that we saw in
Section 4.3 when we discussed partial application. In general, whenever a
function is defined using currying, partial application of the function to its
arguments (left to right) is defined automatically.

Even though we define a mapping as a set, the usual set operators aren't often
very useful. For example, consider f ∪ g where f and g are mappings. The
expression denotes a set of ordered pairs, but not a mapping except in the
special case that the domains of f and g don't overlap. The expressions f ∩ g
and f  − g do denote mappings, but not very useful mappings in most situations.

There are mathematical operators that apply specifically to mappings, and
we'll describe three of them here. One is the domain restriction operator. For
a mapping f and a set A, f│A is f with its domain restricted to A. We can
define it this way:

f│A = { a ↦ b │ a ↦ b ∈ f and a ∈ A }

Another mapping operator is called overriding union or just override. For two
mappings f and g, f ⊕ g is f overridden by g; it is a mapping that agrees with

2Yes, feel free to make the obvious puns. Chutney, anyone?
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g everywhere on the domain of g and agrees with f otherwise.3 We can define
⊕ like this:

f ⊕ g = g ∪ (f│
dom f - dom g)

Mapping overriding isn't given much attention in mathematics, but it is central
to computation. We can describe a computer's main memory as a mapping
from locations to values stored at those locations, and any operation that
stores values in one or more memory locations is an overriding of that
mapping. Similarly, elements of a data structure are often accessed by subscripts
or keys. Then the data structure forms a mapping, and any operation that
stores values into the data structure overrides the mapping. We will see
examples from Python in the next section.

Although the fact may not be obvious at first glance, the override operator is
associative: (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h) for all mappings f, g, and h. And there is
an empty mapping, the empty set, and it acts as an identity for ⊕. Therefore
(surprise!) mappings are a monoid under ⊕, with the empty mapping as the
identity. But ⊕ is certainly not commutative, because it is asymmetric: maplets
in the second operand take precedence over maplets in the first operand.

We can sometimes use the associative property of overriding to improve the
efficiency of updates to large mappings, as found (for example) in databases,
or the efficiency of updates to mappings held at remote locations in distributed
systems. A sequence of updates g0, g1, … , gn to a mapping f replaces f by (((f
⊕ g0) ⊕ g1) ⊕ … ) ⊕ gn. Especially if all the updates are relatively small
compared to f, it can sometimes be more efficient to precompute the whole
“batch” of updates g0 ⊕ g1 ⊕ … ⊕ gn and then override f with the result. Notice
that the previous expression contains no parentheses; again by associativity,
we can group the updates in any way we like, or construct a “big ⊕” operation
that combines them all. Since overriding is not commutative, though, we must
take care to keep the updates in the proper order.

3 The symbol ⊕ is from the Z notation. Z is a mathematical notation, developed at Oxford University,
for writing specifications of programs.
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A third operator on mappings is the composition operator. For two mappings
f and g, their composition is written as g 3 f and is defined as follows:

(g 3 f)(x) = g(f(x)).

In other words:

g 3 f = { (a, c) │ (a, b) ∈ f and (b, c) ∈ g }

One can read g 3 f as “g after f”.

Notice that for a value x to be in the domain of g 3 f, not only must x be in
dom f, but f(x) must be in dom g.

A mapping f can be composed with itself, which is most useful when ran f ⊆
dom f; in fact, we often compose a mapping with itself more than once. Instead
of f 3 f we often write f 2, for f 3 f 3 f we often write f 3, and so on for higher
“powers” of f.

9.2. Python dictionaries
We have already seen Python constructs that act like mathematical mappings.
Most obviously, a Python function that returns a value is a mapping. But static
sequences — tuples, lists, and even strings — act like mappings too. Recall
that an element of a static sequence S can be accessed by position: S[i] where
i is an integer value in the range 0 to len(S)-1 inclusive. Therefore, we can
use S as a mapping having that range as its domain.

A Python dictionary is another kind of static container that acts like a mapping,
but whose domain is not necessarily a range of integers; the first element of
each ordered pair can be of any of a wide variety of Python types.

To construct a dictionary, we can use a dictionary display that shows the
ordered pairs explicitly. A dictionary display looks like a set display containing
ordered pairs, which are written as two values separated by a colon. Here is
an example that maps several English names of numbers to their integer values:

numberValue = { "one":1, "two":2, "three":3 }
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In this context the colon acts like the maplet operator ↦ .

The first element of the ordered pair is called a key. To get the value associated
with a given key in the dictionary, we use an expression of the same form as
an expression that selects an element of a sequence by position: the name of
the dictionary, followed by a key in square brackets. Thus, in the example
above, numberValue["two"] would have the value 2.

Dictionary keys can be of almost any Python type; for example, Python
programmers frequently use strings as dictionary keys, as in the example
above. But Python uses hashing (Section 8.2) on the key of each ordered pair
to store the pair in the dictionary, so a dictionary key, like a set member, must
be an immutable object. The value associated with the key, on the other hand,
can be any Python value.

Python has dictionary comprehensions, which look like set comprehensions
except containing ordered pairs using colons. This comprehension, for example,
associates each integer from 0 to 49 with its factorial (Section 4.2).

{ n:factorial(n) for n in range(50) }

Python has a number of operations on dictionaries; we'll describe only a few
of them here. For any dictionary d, items(d) is an iterator that yields the key-
value pairs in d as two-element tuples, keys(d) is an iterator that yields the
keys of d (that is, the domain of d), and values(d) is an iterator that yields
the values associated with the keys of d (its range). To get the number of
ordered pairs in d, we write len(d).

The assignment statement d[k] = v associates the value v with the key k in d;
it overrides any existing value associated with k if there is one. In mathematical
notation, it replaces d with d ⊕ { k ↦ v }. If e is another dictionary, d.update(e)
overrides d with all the ordered pairs in e; it replaces d with d ⊕ e.

For the programmer's convenience, a few dictionary operations use the keys
in a dictionary where one might expect the ordered pairs to be used instead.
The Boolean expression k in d tests whether k is a key for some ordered pair
in d. As with sets, the in operator uses hashing for efficiency. The expression
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k not in d works similarly. And an operation that iterates over a dictionary,
such as a for-statement, creates an iterator over the dictionary's keys rather
than over its key-value pairs. (As in iterating over a set, the order is
unpredictable). In the following example, if codes is a dictionary whose values
are strings, codesString becomes the concatenation of those strings in some
order.

codesString = ""
for k in codes:

codesString += codes[k]

Programmers frequently construct dictionaries from data in flat files, using
code similar to the code that we presented in Section 8.4 for constructing sets
from flat files. In fact, we can conveniently use the generator function
streamOfTuples from Example 8.2 to help in constructing dictionaries from
CSV files. Here is the function again:

def streamOfTuples(fileName):
return ( line.strip().split(","))

for line in open(fileName) )

Suppose that addressBook is a CSV file whose lines contains names of people
and their email addresses. Here is one way to construct a dictionary that maps
names to email addresses:

address = { name : email
for (name,email)
in streamOfTuples("addressBook") }

And here is one way to construct mappings in both directions, while reading
the file only once for efficiency:

address = {}
owner = {}
for (name,email) in streamOfTuples("addressBook"):

address[name] = email
owner[email] = name

Now suppose that we want to construct a dictionary in which we use pairs
of values to select elements. For example, suppose that populations is a CSV
file in which each line is a triple: the name of a country, the name of a city in

133

Python dictionaries



that country, and the city's population. Sometimes we need both the city name
and the country name to find the correct population figure; for example, Perth
in Australia is not the same place as Perth in Scotland. Let's see how to
construct from the file a dictionary that maps a country and a city to the city's
population.

Just as in constructing a mathematical mapping with two arguments, there
are two obvious ways to construct the dictionary that we want. The first way
is to use a 2-tuple of a country and a city as a key. Here's how we might do
it:

population = { (country,city) : pop
for (country, city, pop)
in streamOfTuples("populations") }

Then, for example, we could get the population of Perth in Australia with the
expression population["Australia","Perth"], assuming that the file
populations contained a line with the corresponding data. Recall that the
comma between the two strings creates a tuple from them; we don't need
parentheses.

If you have written programs in other programming languages, you may have
encountered a data structure called a “two-dimensional array”. It may appear
that population is such a structure, accessed by a country in one “dimension”
and by a city in the other. But it isn't: it is a “one-dimensional” structure
accessed by a single value, a 2-tuple.

In Python, the more usual way to construct a dictionary accessed by pairs of
values is like defining a curried function: by defining a dictionary of
dictionaries. In the current example, we might define a dictionary whose keys
are country names, and whose associated values are dictionaries that map city
names to populations. Here is one way to do it. Notice that we must iterate
over the tuples twice: the first time: the first for-statement finds the set of the
countries in the data and constructs all the first-level dictionaries.
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population = {}
tuples = setOfTuples("populations")
for country in { co for (co, city, pop) in tuples }:

population[country] = {}
for (country, city, pop) in tuples:

population[country][city] = pop

Then we would get the population of Perth in Australia with the expression
population["Australia"]["Perth"].

You can probably see what you would need to do to construct a dictionary
accessed by more than two values.

9.3. A case study: finding given words in a file of
text

Let's pause for another case study, to put together a number of the concepts
that have been presented so far. We'll present a programming problem and
then see how we might choose discrete-mathematical structures for various
parts of the solution.

Suppose we have been given the job of writing the following program:

I need a program that will search an electronic document for a number
of words. For each of those words, the program will display the word
and the line number of every line in the document on which the word
occurs.

For current purposes, the words will be in a file named “targets”,
one word per line, and the document will be in a file named
“document”.

Perhaps the person making the request is an author creating an index for a
book, or a researcher looking for particular terms in a web page. We'll call
this person “the client”. Let's analyze in discrete-mathematical terms the
specifications that the client gave us.

The words that we will search for are apparently a set.

135

A case study: finding given words in a file of text



The information that the client wants is a mapping from words to collections
of line numbers. What are the collections? The client says “the line number
of every line in the document on which the word occurs”. If a word occurs
twice on a line, the client apparently doesn't want to see the line number twice.
So let's make each collection a set so that it won't contain duplicates.

One way to look at the document is as a sequence of lines, each of which is
a sequence of words separated by white space. Another way is simply as a
sequence of words separated by white space, as we did in Section 7.5. But that
isn't enough information in this case, because we'll need to know the number
of the line on which each word occurred. So let's consider a third possibility:
we'll treat the document as a sequence of words, each with an associated line
number; in other words, a sequence of ordered pairs. In fact, we could treat
the document as a set of such pairs — we would get the same result — but,
since we anticipate that the document may be very long, we'll plan to treat it
as a stream of ordered pairs, generated dynamically as we read the document.

We have already seen how to do some parts of our computation. To construct
the set of “targets”, the words that we are looking for, we can use a simple
set comprehension like one that we used in Section 8.3:

targets = { line.strip() for line in open("targets") }

In Section 7.5 we defined a generator function to generate a stream of words
from a file, removing leading and trailing punctuation from each word:

def words(fileName):
punctuation = ".,:;'" + '"'
file = open(fileName)
for line in file:

words = line.strip().split()
for word in words:

yield word.strip(punctuation)

We can easily modify this function so that it counts lines as it reads them, and
so that every value that it yields is a two-element tuple of a word and a line
number:
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def wordsAndLineNumbers(fileName):
punctuation = ".,:;'" + '"'
lineno = 0
file = open(fileName)
for line in file:

lineno += 1
words = line.strip().split()
for word in words:

yield (word.strip(punctuation), lineno)

A Python dictionary is ideal for representing the mapping that we are
constructing; words in targets will be the keys of that dictionary. We call it
linesFoundOn, and initialize it to map each word in targets to an empty set,
using a dictionary comprehension:

linesFoundOn = { t : set() for t in targets }

Then the main computation is very easy using set operations:

for (word,lineno) in wordsAndLineNumbers("document"):
if word in targets:

linesFoundOn[word].add(lineno)

Now we display the results. The only hard part is to format each set of line
numbers in an appropriate way. Let's assume that we have a function named
formatted to do that; we'll define formatted later. Using that function, it's
easy to display the results that the client asked for:

for t in targets:
print(t + " " + formatted(linesFoundOn[t]))

The only job left is to define formatted, and first we need to decide how we
want to format each set of numbers. The client didn't say anything about
displaying line numbers in any particular order, but we can guess that
ascending order might be most convenient for the client. Python has a built-
in function named sorted that takes any iterable and returns its values sorted,
as a list; we'll use that function. So the definition of formatted will use the
expression sorted(numberSet), where numberSet is the parameter of formatted.

Python also has a built-in function named join that takes any sequence of
strings and concatenates them into one string, separated by another given
string. The syntax is separator.join(strings). Let's use a comma followed by
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a space as a separator. So far we have sorted(numberSet), which is a list of
numbers; we can convert it to a sequence of strings by writing this:

map(str,sorted(numberSet))

Then we can define formatted like this:

def formatted(numberSet):
separator = ", "
return separator.join(map(str,sorted(numberSet)))

Putting all the pieces together, we get the program shown as Example 9.1
below.

Notice how the program uses examples of all of the following mathematical
and Python constructs:

• streams and generator functions

• 2-tuples

• functional programming with map

• sets and set comprehensions

• mappings, dictionaries, and dictionary comprehensions

See how straightforward and concise each part of the program is as a result.
The only slightly messy part is the definition of wordsAndLineNumbers, but
then reading input and taking it apart is often the messiest part of a program.
And notice that the whole program is only 19 lines long, not counting blank
lines.

Then suppose that the file document contains this brief sample of text:
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Example 9.1. Finding given words in a document
def wordsAndLineNumbers(fileName):

punctuation = ".,:;'" + '"'
lineno = 0
file = open(fileName)
for line in file:

lineno += 1
words = line.strip().split()
for word in words:

yield (word.strip(punctuation), lineno)

def formatted(numberSet):
separator = ", "
return separator.join(map(str,sorted(numberSet)))

targets = { line.strip() for line in open("targets") }

linesFoundOn = { t : set() for t in targets }

for (word,lineno) in wordsAndLineNumbers("document"):
if word in targets:

linesFoundOn[word].add(lineno)

for t in targets:
print(t + " " + formatted(linesFoundOn[t]))

Wants pawn term dare worsted ladle gull hoe lift wetter murder inner
ladle cordage honor itch offer lodge, dock, florist. Disk ladle gull
orphan worry putty ladle rat cluck wetter ladle rat hut, an fur disk
raisin pimple colder Ladle Rat Rotten Hut.4

And suppose that the file targets contains these lines:

ladle
gull
hut

4 Howard L. Chace, Anguish Languish, Prentice-Hall, 1956. At the time of writing, available at
http://www.justanyone.com/allanguish.html, which asserts that the copyright of the book has expired.
(Try reading the sample text aloud with a bit of a drawl.)
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Then the output of the program might be as follows.

hut 3
gull 1, 2
ladle 1, 2, 3

The order of the lines of output is unpredicable; if we want them in alphabetical
order by word, we could use sorted on the set targets and write this:

for t in sorted(targets):
print(t + " " + formatted(linesFoundOn[t]))

9.4. Dictionary or function?
As we have seen, we can implement a mapping in a program either as a data
structure (for example, a static sequence or a dictionary in Python) or as a
computation (for example, a Python function). In many respects the two kinds
of implementation are equivalent, especially to the program code that uses
the mapping, and in Python the notation for using the mapping is similar in
the two cases. For example, to get the value to which the mapping f maps the
value a, we write f[a] if f is a sequence or a dictionary and f(a) if f is a
function.

To choose between a data structure and a computation to implement a
particular mapping, a programmer must take into account a number of
considerations. Here are some of them:

• Recall that a data structure in a program must be finite in size and also
relatively small rather than “finite but far too large” (Section 2.3). A
computation may be the only reasonable choice if the domain of the mapping
is very large, such as the set of all Python integers or strings.

• Some mappings in programs must be mutable. This is no problem if the
mapping is stored as a mutable data structure, such as a list or a dictionary.
In most programming languages, program code can't be changed by the
program itself, or at least not easily. The mapping implemented by a
computation can often be made mutable to some extent, though, if the
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computation bases its results on data stored in variables or mutable data
structures.

• Once mappings are stored in some data structures such as Python
dictionaries, a program can find the value associated with a value in a
mapping's domain quite efficiently, often more efficiently than with another
kind of computation.

• Depending on circumstances, either the implementation as a data structure
or the implementation as a computation may be easier to program. To
program a mapping as a computation, a programmer must know a method
for computing the mapping, and preferably a reasonably simple method.
Some mappings are so apparently arbitrary that they are most easily
constructed from explicit data.

But that data must come from somewhere. Small mappings can conveniently
be defined using constructs like Python's dictionary displays, so that the
data is built into the program. More commonly, the data comes from a
source external to the program, such as a file or data base. We have seen
how to construct a mapping, as a Python dictionary or sequence, from all
the data in a file. On the other hand, sometimes it can be more efficient to
program a computation that selectively reads only a small part of a file or
data base to implement a mapping, although we will not present techniques
for doing so in this book.

Even when there is an obvious computation that defines a mapping, it is
sometimes useful to precompute the mapping and store the results in a data
structure. Here is an example. Suppose that a Python program has a dictionary-
of-dictionaries distance that maps pairs of cities to the distance by road (in
kilometers, say) between them. Perhaps distance was constructed from a flat
file, as population was in the second construction in Section 9.2. Then, to get
the distance between two cities, the program would use an expression like
distance[city][otherCity].

Now suppose that the program needs to find a city's nearest neighbor; that
is, for a given city, the other city that is a minimum distance away by road.
Here is a function that will do that computation:
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def nearest(city):
# neighborDistance = a dictionary
# { each neighbor of city |-> distance to it }
neighborDistance = distance[city]

# until we have at least one candidate:
nearest = None
minDistance = float("Infinity")

# for each neighbor of city:
for otherCity in neighborDistance:

if neighborDistance[otherCity] < minDistance:
nearest = otherCity
minDistance = neighborDistance[otherCity]

return nearest

The definition of nearest illustrates several interesting programming
techniques. First, notice that, since distance is a dictionary of dictionaries (a
curried mapping, so to speak), the function can get the mapping
neighborDistance by partial application and use it conveniently in the
statements that follow. Second, notice that the function returns the value None
in the (possibly unlikely) event that distance defines no neighbors for city;
it is generally a good idea to program a computation so that it always computes
a well-defined value in every situation, however unlikely. Finally, notice how
the Python “infinity” value is used. This is a common use for it: as the starting
value for a computation that finds a cumulative minimum value.

But notice that nearest does a somewhat time-consuming computation. The
body of the for-statement is executed once for every neighbor of city. If each
city has an average of n neighbors, a call to nearest will consume time
approximately proportional to n on average. If the program needs to call
nearest many times, say m times, the total time will be approximately
proportional to mn, which may be prohibitive if m and n are large.

In some situations it may be a good idea to precompute the values of nearest
for all cities and store the values in a dictionary:

nearestStored = { city : nearest(city)
for city in keys(distance) }
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Then a dictionary access nearestStored[c] will be much faster than a call
nearest(c), especially if n is large. It is true that it takes significant time to
construct nearestStored — approximately proportional to kn if there are k
cities — but if m is much larger than k, the overall savings in time will probably
be worthwhile.

It is possible to program a mapping so that it looks up its result in a dictionary
in some cases and uses a computation in other cases. There is an interesting
programming technique that works this way: it is called memoization. No,
that's not a typo! The word is “memo-ization” as in keeping a memo.

The idea of memoization is to store the result of a computation so that, if the
same computation needs to be done again, the stored result can be used instead.
In particular, a memoized function, before returning its result, stores the result
in a table using the argument value as a key. If the function is ever called again
with the same argument value, the function returns the stored result from the
table instead of recomputing the result.

As an example, let's consider the function that calculates a Fibonacci number.
In Section 7.2 we saw functions that returned sequences of Fibonacci numbers.
Now let's consider the function that, given a positive integer n, returns only
the nth Fibonacci number. As we frequently do in programming, we'll count
from 0 rather than 1.

Here's a version that calculates the nth Fibonacci number iteratively; that is,
by using an iteration. It's a simple adaptation of the function fibs from
Section 7.2. Notice the simultaneous assignment.

def fib(n):
a = 1
b = 1
for i in range(n):

a, b = b, a + b
return a

This function computes a single Fibonacci number reasonably efficiently, but
if a program uses it to compute many Fibonacci numbers, the function may
waste a lot of effort. If a program evaluates fib(1000), the body of the for-
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statement is executed 1000 times. It would be faster to simply use the sum of
fib(999) and fib(998) if those values happen to be available already.

Let's look at a recursive version of the Fibonacci function. By definition, the
first two Fibonacci numbers are 1 and 1, and every other Fibonacci number
is the sum of the previous two. Here is a recursive function that is a direct
translation of that definition.

def rfib(n):
if n == 0 or n == 1:

return 1
else:

return rfib(n-2) + rfib(n-1)

This function works, but it is very inefficient. Notice that the last line of the
function body computes rfib(n-2) and then rfib(n-1), and the latter recursive
call ends by computing rfib(n-2) again! Similarly, rfib(n-3) is re-evaluated
unnecessarily (more than once, in fact), and so on.

Now here is a memoized version of the recursive function. It saves its results
in a Python dictionary, which is an ideal kind of container for the purpose.
The test in the first line of the function body is very efficient, and if it succeeds
the function simply returns the previously-stored result.

Example 9.2. A memoized function: the n
th

 Fibonacci number
fibStored = {}

def mfib(n):
if n in fibStored:

return fibStored[n]
elif n == 0 or n == 1:

return 1
else:

result = mfib(n-2) + mfib(n-1)
fibStored[n] = result
return result
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All three versions of the function, in the process of computing the nth Fibonacci
number, compute all smaller Fibonacci numbers. The iterative function
computes each only once. Since the memoized function never recomputes a
Fibonacci number that it has computed before (not counting the trivial 0th

and 1st, which require essentially no computation), it should be approximately
as efficient as the iterative version in computing a single Fibonacci number.
Furthermore, in the process, the memoized function fills in the dictionary with
the results of computing that number and all the smaller Fibonacci numbers.
If a program calls the function again with a different n, the required Fibonacci
number may already be in the dictionary, so that the program gets the number
essentially for free, computationally speaking; and if not, computing that
number fills the dictionary with even more results, increasing the chances that
any later call will get its result for free.

9.5. Multisets
We first saw a multiset in Section 1.3, where we saw that the file of temperature
observations was a multiset. A multiset (sometimes called a “bag”) has
properties in common with a set, but it also has properties in common with
a mapping, as we will see in this section.

In mathematics there seems to be no commonly accepted notation for multisets,
and multisets are often written with the same curly braces that are used to
write sets, so that the multiset that includes 2 twice and 3 once might be
written { 2, 2, 3 }. In this book we will use different bracketing characters for
multisets to distinguish them clearly from sets: we will write the previous
multiset as ⦃ 2, 2, 3 ⦄. This way we can tell unambiguously that (for example)
{ 2, 3 } is a set but ⦃ 2, 3 ⦄ is a multiset that happens to contain no element
more than once. (The character ⦃ is the Unicode character called “left white
curly bracket”, and similarly for the right bracket.)

You may not hear much about multisets in your mathematics classes. In fact,
you may hear a lot about sets, but nothing at all about multisets. That's
because, to mathematicians, sets are far more important than multisets. Sets
pervade all of mathematics, from the foundations on up.
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But multisets do have a few important uses in mathematics. For example, the
prime factors of a number are a multiset, not a set. Consider the number 360.
As you can see by factoring it, 360 is 2 · 2 · 2 · 3 · 3 · 5, so its prime factors
are the multiset ⦃ 2, 2, 2, 3, 3, 5 ⦄.

To take another example, the roots of an algebraic equation can be viewed
as a multiset. Recall some simple algebra: the equation x2 - 5x + 6 = 0 can be
written as (x - 2)(x - 3) = 0, so its roots are 2 and 3. In one way of defining
roots, a quadratic equation always has two roots, but they may be the same.
For example, the equation x2 - 4x + 4 = 0 can be written as (x - 2)(x - 2) = 0,
so its roots are the multiset ⦃ 2, 2 ⦄.

Consider the collection of different items available in a particular shop. Clearly,
that's a set. But what about the collection of all the items on the shelves —
the inventory? It's a multiset. In taking an inventory, an obvious way to
proceed is to take the set of different items and count how many of each item
there are.

In fact, one way of looking at a multiset is as a mapping from elements to the
count of each. For example, the multiset ⦃ 2, 2, 2, 3, 3, 5 ⦄ can be treated as
equivalent to the mapping { 2 ↦ 3, 3 ↦ 2, 5 ↦ 1 }. Then we can get the
number of occurrences of a value in a multiset, if it occurs there at all, using
functional notation; for example, if the previous multiset is m, then the count
of 3 in m is m(3) or 2.

Let us define a function count, which gives the number of occurrences of a
value in a multiset, as follows: for a multiset m and a value a, count(m,a) is
m(a) if a ∈ dom m and 0 otherwise.5

Using count we can define other operations on multisets. For example, the
multiset sum operator, written ⊎, takes two multisets as operands and produces
another in which the counts of elements are the sums of the counts in the two
operands. Multiset union is different: every count is the maximum of the
counts from the operands, rather than the sum. Multiset intersection uses

5In mathematics the term “multiplicity” is often used instead of “count”, but we will use the shorter
word.
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minima instead of maxima. In other words, the three operators are defined
by these equations: for multisets m and n and element a,

count(m ⊎ n, a) = count(m, a) + count(n, a)

count(m ∪ n, a) = max(count(m, a), count(n, a))

count(m ∩ n, a) = min(count(m, a), count(n, a))

There are two obvious implementations of a multiset in Python: either as a
sequence of values (a tuple or a list, depending on whether the multiset needs
to be mutable), or as a dictionary mapping values to counts. Either
implementation has its advantages and disadvantages.

In the implementation as a sequence, the elements have an order but the order
is not important; we use a sequence rather than a set only because a sequence
can contain the same value more than once. The built-in Python method count

is exactly the function count: recall that, if m is a sequence, m.count(a) gives
the number of occurrences of a in m. Python must traverse the whole sequence
to do the counting, though, so the operation can be time-consuming if m is
large. Multiset sum can be simply concatenation. Multiset union and
intersection, on the other hand, require more computation: see Exercise 14.

The implementation as a dictionary is probably better if the most common
operation will be to access counts of elements, as is frequently the case in
programs. Where it is certain that a is in multiset m, the count is simply m[a],
which Python can evaluate quite efficiently. In the general case, count must
be programmed as a function, but the function is simple and again Python
can compute it efficiently:

def count(m,a):
if a in m:

return m[a]
else:

return 0

Multiset sum, union, and intersection require a bit more computation: see
Exercise 15.
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It is easy to construct a multiset of the lines of a flat file. For a tuple
implementation, tupleOfValues from Section 8.4 gives us the multiset directly,
and similarly for a list implementation. If we want to construct a dictionary
implementation, we can use streamOfValues from the same section as follows:

def multisetOfValues(fileName):
m = {}
for a in streamOfValues(fileName):

if a in m:
m[a] += 1

else:
m[a] = 1

return m

Many other multiset operations that you are likely to need in a Python program
will be simple variations on that code. For example, suppose you want to treat
the lines of a file as integer values, as in the program of Example 1.3. The
following function constructs a multiset of those values:

def multisetOfIntegers(fileName):
m = {}
for a in streamOfValues(fileName):

n = int(a)
if n in m:

m[n] += 1
else:

m[n] = 1
return m

You can probably see easily how the function would look if you wanted to
construct a multiset of values from a file transformed in some other way, or
a multiset of the values of a particular field in the file lines, and so on.

The if-statement in those functions is a common pattern of code and, packaged
as a function on its own, can be useful in many programs:

# tally(m,x):
# add 1 to the count of value x in multiset m

def tally(m,x):
if x in m:

m[x] += 1
else:

m[x] = 1
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In the common situation in which a program uses a multiset as a set of
counters, the two central operations on the multiset will often be the functions
tally and count that we have just defined.

Here's a simple example of a program that uses a multiset as a set of counters.
Given the file students that we used in Section 8.4, the program tabulates
and displays the number of students in each major field of study represented
in the file. Using the function tally and the function streamOfTuples from
Example 8.2, it's as easy as this:

Example 9.3. Number of students in each major field
counts = {}

for (name,major) in streamOfTuples("students"):
tally(counts,major) # use major, ignore name

for major in counts:
print major + ": " + counts[major}

Terms introduced in this chapter
powers of a mappingmaplet
dictionary displaydomain
dictionary comprehensionrange
keycurried function
memoizationdomain restriction
multiset sum, union, intersectionoverriding union, override

composition

Exercises
1. Consider the following Python function:

def p(x,y):
return x*y
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Python gives us no way to say that we mean the domain of p to be pairs
of integers, or pairs of floating-point numbers, or something else. As it
stands, what is the domain of p?

2. Convince yourself, using examples, that the ⊕ operator is associative.
Then show why (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h) for any mappings f, g, and h. Use
pictures if you like; or, if you can, give a mathematical proof.

3. Consider mappings c and d. Under what conditions on c and d does
c ⊕ d = d ⊕ c?

4. Write a higher-order Python function that returns the composition of two
one-argument functions, as a one-argument function.

5. Write a Python function that returns the composition of two dictionaries,
as a dictionary.

6. If f is a function, does the notation f 0 have a sensible meaning? If so,
exactly what does f 0 denote?

7. When we defined f 3 as f 3 f 3 f we did not use parentheses in the latter
expression. Was this justified? Is composition of functions associative?
Does it have an identity? If so, what is it? Do we have another monoid
here?

8. Which analog of a two-dimensional array — the single dictionary using
ordered pairs as keys, or the dictionary of dictionaries — is preferable in
Python? Which representation can the Python interpreter operate on more
efficiently? Conduct an experiment: construct two structures, one of each
kind. Then time how long it takes the Python interpreter to access all
elements of each structure (to set all the elements to zero, for example).

Discuss what considerations besides speed you might use to decide which
representation to use in a particular program.

9. Look again at the function wordsAndLineNumbers in the program of
Section 9.3. Did it occur to you that this code zips together two sequences
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(Section 7.5)? Rewrite wordsAndLineNumbers using zip. Do you like this
version of the program better?

10. Modify the program of Section 9.3 so that it finds words in the document
ignoring the distinction between upper and lower case letters. For example,
with the sample files given, the program would match “hut” in the file
targets not only with “hut” on line 3 of the file document but also with
“Hut” on line 4. (Hint: look in the Python documentation for a function
that will help.)

11. In the nearest function of Section 9.4 we used float("Infinity") as the
starting value in a cumulative-minimum computation. Is it only a
coincidence that float("Infinity") is the identity of the monoid of Python
floating-point numbers under the minimum-function (Section 6.2)? What
would you use as the starting value in a cumulative-maximum
computation? Can you think of similar computations that you might do
in other monoids? How are such computations related to “big” operators
and to the reduce function of Section 6.4? Can you rewrite nearest using
reduce instead of an iteration?

12. Experiment with versions of the fib function. Is the memoized recursive
version more efficient than the iterative version? Run each version with
a sequence of calls, using a variety of argument values, to give the
memoized version a chance to use its stored results.

You should expect that the non-memoized recursive version of the function
will be much slower than the other two versions for large values of n.
Experiment to see how large n needs to be to make the non-memoized
recursive version impossibly slow.

13. Memoize some other functions and experiment with them to see whether
the memoized versions are more efficient than the usual versions. You
might try nearest (Section 9.4), factorial (Section 4.2), or isPrime

(Exercise 2 of Chapter 8). Again, run each version of each function with
a sequence of calls using a variety of argument values.
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14. Write Python functions for multiset union and intersection, assuming that
multisets are implemented as lists.

15. Write Python functions for multiset sum, union, and intersection, assuming
that multisets are implemented as dictionaries. In the dictionaries that the
functions return, don't include any keys that map to zero.
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Chapter 10
Relations
10.1. Mathematical terminology and notation

We first saw relations in Section 1.3, where we described relations that are
sets of ordered pairs. As we noted in Section 5.3, though, relations in
mathematics are more generally sets of n-tuples for any n.

A relation that is a set of ordered pairs is called a binary relation, as we have
seen. There are names for relations that are sets of n-tuples for larger n; for
example, a set of 3-tuples is a ternary relationship and a set of 4-tuples is a
quaternary relation. The general term is n-ary relation. As with n-tuples, we
can substitute a specific number for n, so that (for example) a ternary relation
is a 3-ary relation. The file populations of Section 9.2 was conceptually a
3-ary relation: a set of triples in which each triple contained a city, another
city, and the distance between them.

If an n-tuple is in a relation, we often interpret that fact as implying that some
corresponding relationship holds among the elements of the n-tuple. For
example, consider the relation defined by the data in the file emails of
Example 1.2. Call that relation E; then (x, e) ∈ E means that person x has
email address e.

In mathematics a binary relation is often used as a binary operator: for
example, if (x, e) ∈ E, we can also write x E e. Conversely, a binary operator
that yields a value of true or false — that is, a Boolean operator — defines a
binary relation. For example, the mathematical “=” operator defines a relation
that contains (a, a) for every a in the universe of discourse. (If that universe
is infinite, then the relation is an infinite set, which illustrates that relations
can be infinite.) We can even use the operator as the name of the relation, and
write (a, a) ∈ =.
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More generally, an n-ary relation defines a predicate, a statement about n
things that is true if the n-tuple of those things is in the relation and false
otherwise. Or, conversely, such a statement defines a relation. The notation
of functions is often used for predicates: for example, if P is a 3-ary relation
and (a, b, c) ∈ P, then P(a, b, c) has the value true. Similarly, if (a, b, c) ∉ P,
then P(a, b, c) has the value false.

Often we use a longer name, rather than a single letter or symbol, for a relation
or an operator or a predicate; as we have seen, mathematicians and computer
scientists can be rather free in their use of notation. For example, we may
write “equals” instead of “=”, or “hasEmail” for the relation of Example 1.2.
And we often use the notations of relations and operators and predicates
interchangeably, so that (for example) in each row of the table below all of
the expressions have the same meaning.

predicateoperatorrelation

E(x, e)x E e(x, e) ∈ E

=(a, b)a = b(a, b) ∈ =

P(a, b, c)(a, b, c) ∈ P

equals(a, b)a equals b(a, b) ∈ equals

hasEmail(x, e)x hasEmail e(x, e) ∈ hasEmail

A 1-ary relation (a set of one-element tuples) is seldom very useful, but
predicates of one argument are common in mathematics. We usually interpret
such a predicate as a property that a single thing may or may not have, and
then the predicate defines a set rather than a relation: a one-argument predicate
P defines the set of all a for which P(a) is true. To take an example from
Section 8.1, suppose that smallOdd(n) represents “0 < n < 100 and n is odd”.
Then the predicate smallOdd defines the set of numbers with that property;
that is, { n │ smallOdd(n) }.

When a relation R consists of n-tuples whose elements are all members of the
same set A, we say that R is a relation on A. The set is an important property
of the relation. For example, many binary relations that are important in
mathematics and computer science are denoted by binary operators, but if an
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operator is overloaded we must know the set that the relation is on to know
what relation we are talking about. The “<” relation on integers is not the
same as the “<” relation on real numbers, because they are completely different
sets of ordered pairs.

Notice that any relation is always on some set, whether the set is explicitly
given or not; the smallest set satisfying the definition of “on” is implicitly
defined by the n-tuples in the relation. If the relation is given but the set is
not, and if the relation is finite and reasonably small, we can compute the set
from the relation.

Mathematicians have identified a number of properties that some binary
relations have, and we'll mention a few of them here. A binary relation R is
symmetric if, whenever a pair (a, b) is in R, then (b, a) is also in R. For
example, the relation “=” on integers is symmetric, because if a = b, then b =
a.

On the other hand, a binary relation R is antisymmetric if, whenever a pair
(a, b) is in R, then (b, a) is not in R. For example, the relation “<” on integers
is antisymmetric. Notice that from the fact that (b, a) is not in R we can't
conclude that (a, b) is in R; consider the relation “<” and the pair (3, 3), for
example.

A binary relation R is transitive if, whenever (a, b) ∈ R and (b, c) ∈ R, then
(a, c) ∈ R. The relations “=” and “<” on integers are both transitive.

If R is a relation on a set A, then we say that R is reflexive if (a, a) ∈ R for all
a ∈ A. For example, “=” on integers is reflexive, but “<” is not.

A binary relation that is symmetric, transitive, and reflexive is called an
equivalence relation. For example, “=” on integers is an equivalence relation.
So is “born in the same year” on pairs of people.

It is not hard to show that an equivalence relation R on a set A defines a
partition on A; that is, a set of subsets of A such that every element of A is in
some subset and no element is in more than one. The relation R partitions A
into subsets of elements that R defines as being equivalent to each other.
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The relation consisting of only (a, a) for all a ∈ A is called the identity relation
on A, and is sometimes written IA. Notice that this relation is a mapping; it
can also be called the identity mapping or identity function on A.

Composition of binary relations is defined like composition of mappings
(Section 9.1): for two relations R and S,

S 3 R = { (a, c) │ (a, b) ∈ R and (b, c) ∈ S }

Powers of binary relations are also defined as with mappings: for a relation
R, we write R2 for R 3 R, we write R3 for R 3 R 3 R, and so on. We define R0

to be the set of all (a, a) and (b, b) for all (a, b) ∈ R; that is, R0 is IA for the
smallest A on which R is defined. We define R1 in the obvious way: it is just
R.

10.2. Representations in programs
Programs frequently represent and compute with relations of one kind or
another. In implementing a relation, a programmer faces many of the same
choices as in implementing a mapping or a multiset. Should the representation
be as a data structure, a computation, or some combination of those? If a data
structure, what kind?

In Python, the most obvious representation of a relation is just what the
definition of “relation” implies: a set of tuples. This representation also has
the advantage of making some operations particularly convenient, such as
iterating through the tuples in the relation or finding whether a given tuple
of values is in the relation.

In some situations another representation may be more convenient, though.
For example, consider a binary relation containing pairs (a, b). If the most
common operation that a program will perform is to find the b values
associated with a given a value, it might be convenient to represent the relation
as a mapping that maps an a value to a set of b values. On the other hand,
this representation makes it rather inconvenient to find the a values associated
with a given b value, should that operation be necessary too.
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Sometimes a computation is a better representation than a data structure for
a relation, just as for a mapping and for any of the same reasons (Section 9.4).
There are two obvious kinds of implementation as a computation:

• As code that enumerates the tuples in the relation: in Python, a generator
function or generator expression, for example. In some situations a stream
or other sequence of all the tuples is just what a program needs. And
occasionally, even if the enumeration would be infinite or very large, a
program might need only some of the tuples of the relation and could take
only a prefix of the sequence. Most often, though, the implementation as
an enumeration is less useful than the alternative, which is:

• As a predicate; that is, as a function that returns a Boolean value. Such a
function takes n arguments or a tuple of n values and returns True or False
according to whether the corresponding n-tuple is in the relation. The
function can do any computation necessary to determine whether it is.

As with a mapping, it can be advantageous to program a predicate partly by
accessing a data structure and partly by a computation. For example, the
computation can be memoized.

Or we can often make use of special properties of relations, as defined in the
previous section, to infer that some tuples are in a relation even though they
are not stored in the data structure. For example, supppose that a relation r

is symmetric. We can construct a Python set rStored (perhaps from data in a
file) that contains pairs (a,b) in one direction, but not the corresponding pairs
(b,a) in the other direction. Then we can implement the predicate defining r

by augmenting rStored with program logic as follows:

# predicate r(a,b):
# is the pair (a,b) in the symmetric relation r?

def r(a, b):
if (a,b) in rStored:

return True
elif (b,a) in rStored:

return True
else:

return False
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or, more briefly,

# predicate r(a,b):
# is the pair (a,b) in the symmetric relation r?

def r(a,b):
return (a,b) in rStored or (b,a) in rStored

This technique cuts in half the quantity of stored data we need. Similarly, if
a relation is reflexive, there may be no need to store all the pairs (a,a) for all
the a in the set on which the relation is defined. In situations in which we will
only invoke the predicate for pairs of values that are in that set, we can
implement the predicate like this:

# predicate r(a,b):
# is the pair (a,b) in the reflexive relation r?

def r(a,b):
return a == b or (a,b) in rStored

We can use similar techniques with relations that are not binary, but that are
symmetric or reflexive in some other sense. For example, consider the examples
in Section 9.4 in which we computed with distances between cities. We can
treat the data in those examples as a 3-ary relation whose triples are two cities
and the distance between them. Since most roads between cities go in both
directions, the road distance between any two cities is probably the same in
both directions, so the relation is symmetric in that sense. And we can probably
treat the distance from every city to itself as zero, as a kind of reflexive
property.

Under those assumptions, we can construct a dictionary-of-dictionaries
distanceStored that contains only distances between different cities in one
direction, and then write a distance function as shown in Example 10.1 below.
With this implementation we decrease the amount of data that needs to be
stored and possibly the work required to generate the data, at the expense of
increased computation time and increased complexity of the code. Tradeoffs
like this one are common in software design.
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Example 10.1. Distances using symmetry and reflexivity
def distance(city,otherCity):
if city == otherCity:

return 0.0
elif city in distanceStored and \

otherCity in distanceStored[city]:
return distanceStored[city][otherCity]

elif otherCity in distanceStored and \
city in distanceStored[otherCity]:

return distanceStored[otherCity][city]
else

return float("Infinity")
# no road connection that we have data for

Transitive relations are harder to deal with, and trying to do something similar
for a transitive relation doesn't work. Suppose we want to write a predicate
r for a transitive relation based on minimal data in a set of pairs rStored. We
would need to return True for a pair (a,c) if there are pairs (a,b) and (b,c)

in rStored for some b, but how do we find the b? Even worse, we would need
to return True for a pair (a,d) if there are pairs (a,b) and (b,c) and (c,d)

in rStored for some b and c, and so on for any longer such chain of values
that might exist in rStored. We'll see how to overcome these difficulties in
Section 10.4.

10.3. Graphs
In mathematics, a graph is a diagram showing points or other objects and
links connecting them, or a mathematical object that represents such a diagram.
In common English usage we think of a “graph” as a plot of data such as the
one in Figure 1.1 (page 15), but in mathematics the term has a specialized
meaning. Here is an example of a graph, shown as a diagram.
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As a mathematical object, a graph is usually defined as an ordered pair (V,
E), where V is a set of vertices (the points or objects; the singular is “vertex”)
and E is a collection of edges (the links). Starting with this basic definition,
there are many variations depending on how V and E are defined. Different
authors use different definitions and terminology, and different definitions
define kinds of graphs with different properties.1 All the definitions that we
will see here use the various structures of discrete mathematics that we have
been discussing throughout the book, and it is interesting to see how these
structures can be combined in different ways according to what one wants to
express in a definition.

In an undirected graph, an edge has no direction and is simply like a line
connecting two vertices, as in the example above. In a directed graph, each
edge has a direction and is like an arrow from one vertex to another, as in the
following example. Edges in a directed graph are sometimes called “directed
edges” or “arcs”.

1 As always, whatever you're reading, read the definitions carefully!
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In either kind of graph, a loop is an edge connecting a vertex with itself. The
previous two graphs have no loops, but the following graph has one.

In one definition of a directed graph, E is a set of ordered pairs of vertices
(elements of V). In one definition of an undirected graph, E is a set of two-
element sets of vertices, since those vertices have no order.

But notice that the latter definition does not allow undirected graphs to contain
loops, since a set cannot contain two identical elements. If we want the
definition to allow loops, the edges must be two-element multisets rather than
sets.

As described until now, an edge in a graph simply represents the fact that two
vertices are connected. Sometimes, though, a graph must represent the fact
that there is more than one connection between a pair of vertices (we call these
multiple edges). Consider a graph that represents the Internet, for example.
The vertices will probably be computers or computing sites, and the edges
(probably undirected) will be physical or virtual communication links. In some
places the Internet has multiple links between pairs of sites for increased
capacity or reliability. A graph that is used to help with routing of messages
or packets probably needs to contain multiple edges to represent the multiple
links.

Definitions of a graph (directed or undirected) that make E a set of edges do
not allow for multiple edges. One solution is to define E as a multiset, not a
set, of pairs or sets or multisets of vertices.
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Some mathematicians take another approach and define a directed graph as
a 4-tuple (V, E, head, tail). Here V and E are simply sets of abstract objects,
and head and tail are mappings from edges to vertices. An undirected graph
has a single mapping from edges to two-element sets or multisets of vertices.
Such definitions allow multiple edges, because any two elements of E are
different by definition even though they may have the same ends.

Notice that all of these definitions allow a graph to contain subsets of vertices
with no edges connecting the subsets with each other; there is nothing in any
of the definitions that says otherwise. In fact, there may even be vertices that
are isolated, connected to no other part of the graph.

Unfortunately, the literature of mathematics and computing is not at all
consistent in definitions and terminology regarding graphs. In many
mathematics textbooks the term “graph” means an undirected graph without
loops or multiple edges; where the terms “directed graph” and “undirected
graph” are used, they often still refer to graphs having no loops or multiple
edges. The books may not say so explicitly, but the definitions in the books,
like some of the definitions above, imply these facts. In such books, graphs
that may contain loops or multiple edges or both, if they are discussed at all,
are given some other name such as “multigraph”.

On the other hand, the term “graph” may be defined so as to allow loops and
multiple edges. If so, the term “simple graph” is often used for a graph with
neither.

This confusion of definitions and terminology has sometimes led programmers
and computer scientists to make mistakes in their algorithms. For example, a
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programmer may learn a definition of “graph” that is really only appropriate
for simple graphs, and then rely on that definition in constructing a graph
algorithm that should allow for loops or multiple edges but does not. Beware
of such mistakes!

There is an intimate relationship between graphs and binary relations; in fact,
we can often view a graph and a binary relation as two different ways of
representing the same information. A directed graph (V, E) defines a binary
relation on V, sometimes called the adjacency relation of the graph, which
contains the ordered pair (a,b) if E contains an edge (a,b). Conversely, a binary
relation defines a directed graph, sometimes called the graph of the relation,
that contains an edge (a,b) if the relation contains the ordered pair (a,b). An
undirected graph defines a symmetric relation, and vice versa, similarly. But
notice that none of these relations can represent any multiple edges that may
be present in the corresponding graph.

In a program, the edge set of a directed graph without multiple edges can be
represented in any of the ways that a binary relation can, as described in the
previous section, and the same design considerations apply. If the graph
contains multiple edges, similar representations are possible where a multiset
of ordered pairs replaces the binary relation. If the graph is undirected, the
representation can be like that of a symmetric directed graph, with a directed
edge in each direction for each edge in the undirected graph. Other
representations are sometimes useful to facilitate particular computations on
graphs, such as the computations that we will consider in Section 10.4, and
we will see a quite different representation in Section 11.6.

Graphs can be augmented to contain additional information. For example, a
labeled graph is a graph in which the vertices or edges or both have identifying
labels, such as names or numbers. For example, in a graph representing a road
map, the vertices might be labeled with names of cities and the edges might
be labeled with names of roads.

In a directed graph with labeled edges, an edge can be defined as a triple of
two vertices and a label. If every edge has a different label, the problem of
multiple edges largely goes away: the collection E of edges can again be defined
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as a set, and multiple edges between two vertices are distinct members of the
set, distinguished by their labels. Similar comments apply to undirected graphs
with labeled edges. In a graph with labeled vertices in which every vertex label
is different, the label of each vertex can sometimes be a convenient
representation of the vertex in a program.

A weighted graph is a graph in which each edge is associated with a number,
called its “weight”. The meaning of the weight depends on what the graph
represents. For example, in a weighted graph in which the vertices represent
cities, the weight of an edge may represent the length of a road between two
cities, as in the examples of Section 9.4, or the time needed to travel between
two cities by train or air. The dictionary-of-dictionaries in Example 10.1 shows
one way to define a weighted graph and represent it in a program: essentially,
using a mapping from edges to weights. In that example the edges are pairs
of vertices; apparently there are no multiple edges. If that is the case, another
representation of the graph could be as a set of triples, each triple being two
vertices and a weight. But in the presence of multiple edges this representation
would not work, because usually there is no reason to believe that all the
weights are different.

A graph can be both labeled and weighted. Graphs that are labeled or weighted
or both are common in computational problems.

10.4. Paths and transitive closure
In computing, one of the most common operations on graphs (directed or
undirected) is to find paths from one vertex to another. A path in a graph can
be defined as a sequence of vertices such that there is an edge in the graph
from each vertex to the next, and a path between two vertices a and b can be
defined as a path beginning at a and ending at b. Alternatively, a path can be
defined as the sequence of edges, and this is the definition that we will usually
use. We will also say that there is a path of length zero, the empty sequence
of edges, from every vertex to itself. Not all mathematicians would allow
empty paths, but if we allow empty sequences it makes sense to allow empty
paths, and the generalization can be useful for avoiding special cases in
computer algorithms.
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Many programs need to compute answers to questions such as these:

• For a given graph and vertices a and b in it, is there a path from a to b?

• If so, what is the length of the shortest path, meaning the path with the
fewest edges?

• Or, if the graph is weighted, what is the length of the minimum-weight
path, meaning the path with the smallest sum of weights?

• Does the graph contain a cycle, meaning a nonempty path from a vertex to
itself? Does the graph contain a cycle that includes some given vertex?

• If the graph is labeled, what is a path (if any) that answers each of the above
questions, as a sequence of labels?

• Is the graph connected: is there a path from each vertex to every other
vertex?

Some obvious examples of programs that do computations like these are the
popular programs that give driving directions for the fastest route between
two cities, and programs that route messages or packets from one site to
another in the Internet.

We can gain insight into the questions above by considering the adjacency
relation of a graph instead of the graph itself, and by considering the transitive
closure of that relation. The transitive closure of a relation R is defined as the
smallest relation containing R which is transitive; that is, the relation we get
by adding to R all the ordered pairs implied by the transitive property and no
others. The transitive closure of R is often denoted as R+.

One way to find the transitive closure of a relation R is to build it up iteratively.
We start with R. Then we find R2: for every pair (a, b) in R, we find every
pair (b, c), and the set of pairs (a, c) is R2. We add that set to our result; we
now have R ∪ R2. Now we find R3 by composing R and R2 similarly, and add
R3 to our result. We continue in this way; then finally we get R+, which is R
∪ R2 ∪ R3 ∪ …
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If R is a finite relation (that is, a finite set of pairs), we do not need to compute
an infinite union to find R+: eventually no new pairs will be added to the
result, and we can stop. The set of all a and b such that (a, b) ∈ R is a finite
set, and there are only finitely many possible pairs of members of that set.
Therefore, we will eventually reach a k such that every pair in Rk+1 is already
in R ∪ R2 ∪ R3 ∪ … ∪ Rk. We can terminate the iterative building of R+ when
this is the case. Thus the method described above is a sketch of an algorithm
for computing R+, guaranteed to terminate if R is finite. We will call it the
Obvious Algorithm for transitive closure.

Now notice that if R is the adjacency relation of G, pairs in R2 are end points
of paths of length 2 in G, pairs in R3 are end points of paths of length 3 in G,
and so on. Then R+ is the set of pairs of vertices (a, b) such that there is a path
of any nonzero length from a to b in G.

So if G is finite, we can compute R+, and it contains the information we need
to answer many of the questions about paths that we listed above. Many
variations on the Obvious Algorithm are possible depending on the question
we want to answer. For example, if we are only interested in paths starting
at a given vertex a, we don't need to compute the whole relation R+; we can
start with only the relation { (a, b) │ (a, b) ∈ R for some b } and repeatedly
compose that relation with R as in the Obvious Algorithm. For questions
involving labels or weights, we can modify the Obvious Algorithm to keep
track of the labels and weights associated with each path we find.

The Obvious Algorithm is not the most efficient algorithm for computing a
transitive closure in all situations or for all kinds of relations or graphs, and
it is not really practical at all for large relations or graphs. Computer scientists
have studied transitive closures and paths in graphs extensively, and there is
a substantial literature describing improved algorithms, as well as data
structures that make the computations easier. All of these results are beyond
the scope of this book, but if you are a computer science student you will
probably see some of them later in your studies. And if you ever need to write
a serious program involving transitive closures or paths in graphs, especially
if the amount of data is large, you should probably investigate the literature
before getting too far into designing the program.
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Other closures are possible besides the transitive closure. For example, the
symmetric closure of a relation R is formed by adding to R the pair (b, a) for
every (a, b) ∈ R. The reflexive closure of a relation R is formed by adding to
R the pairs (a, a) and (b, b) for every (a, b) ∈ R.

The reflexive transitive closure of a relation R is the reflexive closure of R+;
it is often denoted as R*. Then R* = R0 ∪ R1 ∪ R2 ∪ R3 ∪ … . If R is the
adjacency relation of a graph G, there is a pair (a, b) in R* whenever there is
a path, empty or not, from a to b in G.

Transitive closures and reflexive transitive closures have many uses in
mathematics and computer science besides finding paths in graphs but, again,
those uses are outside the scope of this book. The main purpose of the current
section is to introduce you to concepts so that you will start thinking along
the right lines whenever you see a programming problem that can be solved
by finding closures or paths in graphs.

By the way, the superscript “+” and “*” are common idioms in computer
science and mathematics, and are used to mean “one or more times” and
“zero or more times”, respectively, in all kinds of contexts. A computer science
student soon learns that a superscript “*” is not necessarily an instruction to
look for a footnote at the bottom of the page!

10.5. Relational database operations
Now that we have looked at relations in a bit more detail, let us return to the
topic of relational databases.

As we mentioned in Section 5.3, a relation in a relational database is very
much like a mathematical relation, being a set of “tuples”. However, in a
relational database tuple, the elements are identified by name rather than by
position.

In the terminology of relational databases, one property of a relation is the
set of attributes of its tuples. Each attribute has a name, and a tuple is a set
of named attribute values.
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We can describe a database relation in terms of a mathematical relation plus
some additional information about attribute names. Let us represent a database
relation with n attributes as a triple (R, A, col), where R is an n-ary
mathematical relation, A is a set of n attribute names, and col (for “column”)
is a mapping from attribute names to positions, which are integers in the range
0 to n-1. For a particular database relation, say X, we can call the components
of the representation RX, AX, and colX.

In the representation, some order is chosen for the attributes, and the tuples
in R all have their attribute values in that order. Then R is like a table, with
tuples corresponding to rows and attributes corresponding to columns. The
order of the attributes defines the mapping col.

In a small and simple relational database, relations could be implemented
much as the above description would suggest. For example, the R of a relation
could be represented in a program as a set of tuples, and in a file system as a
flat file. However, the implementation of a real, production-quality relational
database system is usually much more complicated, with additional data
structures and algorithms to make access and operations more efficient. All
this complexity is, once again, beyond the scope of the current book. Here
we'll just use our representation (R, A, col) to talk abstractly about database
relations and operations on them, and to help us picture what is going on.

Relational database operations are designed to allow users, often managers
and information technology staff in organizations, to combine and extract
information contained in relations in a database. We'll describe a few of the
most important relational database operations informally here.

Relation union, intersection, and difference are defined much like the
corresponding operations on sets of tuples. These operations on two relations
X and Y make sense only if the relations have the same attributes; that is, we
must have AX = AY.

Let us picture Y′ as the relation we would get by reordering the “columns”
of Y, if necessary, so that the attributes are in the same order as in X. Thus
AY′ = AX, colY′ = colX, and RY′ is RY with the values in each tuple reordered
to agree with colX.

168

Relational database operations



Then the union of relations X and Y is another relation Z, defined as follows:
RZ = RX ∪ RY′, AZ = AX, and colZ = colX. The intersection and difference of X
and Y are defined similarly.

In implementing these operations, we could just as well choose to reorder the
first relation rather than the second. But the implementations would be simpler
if no reordering of either relation would ever be necessary. To ensure that this
is the case, we could define a standard ordering of attributes for all relations
in the database: alphabetical by attribute name, for example.

A very common database operation is selection: to select from a relation all
tuples that meet some criterion. This operation is very much like the filter

function that we first saw in Section 6.4, and like filtering using “if” in Python
comprehensions. In mathematical notation a selection is written as σP(X),
where X is a relation and P is a predicate or Boolean-valued expression (here
σ is a lower-case Greek sigma). The result is a new relation. For example,
consider this relation from Section 5.3:

If this relation is X, and if P is “project = ‘Alpha’”, then σP(X) is

Often a database manipulation needs only some of the “columns” of a relation.
A projection of a relation is a new relation containing a subset of the attributes
of the original relation. In mathematical notation, a projection is written as
πS(X), where X is a relation and S is a set of names of attributes to be included
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in the result (here π is a lower-case Greek pi). For example, if X is as above
and S is { “name”, “lab” }, then πS(X) is

There are a number of operators for combining information from more than
one relation. The most important of these is the natural join. If Y and Z are
relations, their natural join, written Y 9 Z, is created from pairs of tuples in
Y and Z that agree in values of the attributes that the two relations have in
common. The resulting relation contains tuples whose attributes are the union
of the attributes of the pairs of tuples from Y and Z. For example, let X be as
above and let W be this relation:

Then X 9 W is
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By the way, the operator 9 is sometimes called the “bowtie operator”.

Using natural join and projection it is possible to perform an operation that
is much like a mathematical composition of relations. For example, consider
the two-attribute database relations πS(X) and W above: they are much like
mathematical binary relations. Combining them with a natural join, we obtain

Then we perform a projection to remove the common attribute, and we obtain

This result is the relational database equivalent of W 3 πS(X).

Terms introduced in this chapter
loopn-ary relation
multiple edgespredicate
adjacency relationrelation on a set
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graph of a relationsymmetric relation
labeled graphantisymmetric relation
weighted graphtransitive relation
pathreflexive relation
transitive closureequivalence relation
symmetric closurepartition
reflexive closureidentity relation
reflexive transitive closureidentity mapping/function
attributerelation composition
relational union, intersection,power of a relation

differencegraph
selectionvertex
projectionedge
natural joindirected graph

undirected graph

Exercises
1. Obviously IA is reflexive for any set A. Is it transitive? Is it an equivalence

relation?

2. In Section 10.3 we gave a very informal definition of the “graph of a
relation”, but in that definition we described only the set of edges of the
graph. What is the set of vertices? Is there more than one possible choice?

3. Write a Python function that returns the transitive closure of a relation,
where the relation and the result are Python sets of two-element tuples.

4. If G is a finite graph and R is its adjacency relation, and if you compute
R+ using the Obvious Algorithm, what is k, the number of powers of R
that the algorithm will compute before terminating? Can you find an
approximate value, an upper bound, or even an exact value? Express your
answer in terms of paths in G. This k will usually be much less than the
number implied by the argument that there are only finitely many pairs
that R+ can contain.

172

Exercises



5. In a given directed graph, if the vertex at the end of one path is the same
as the vertex at the beginning of another path, the two paths can be
concatenated to form another path in the graph. Is the set of all paths in a
given directed graph a monoid under concatenation?

6. What is σP(X) expressed as a triple? In other words, what are its R, A and
col? Assume that you can use P as a predicate, writing expressions like
“P(x)”.

Repeat for πS(X) and X 9 Y. These are a bit harder, at least if you do them
entirely in mathematical notation.

7. What are some properties of the natural join operation? Is 9 associative?
Is it commutative? Does it have an identity? Do we have another monoid
here?
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Chapter 11
Objects
11.1. Objects in programs

We have used the term “object” in previous chapters, but we have not yet
defined exactly what we mean by “object”. The term has a specific, commonly-
understood meaning in programming, although details of definitions and
terminology vary from one writer to another and from one programming
language to another. Here we will present informal definitions and terminology
that are typical in the programming-language world, and that (in particular)
agree with Python's treatment of objects.

An object is a piece of data that typically has a number of attributes, identified
by name, much like fields in a tuple in a database relation (Section 10.5). For
example, an object representing a person might have attributes “name”,
“address”, and “department”. Objects in a program often represents things
in the real world, and then an object's attributes are properties of the thing.

Thus a programming-language object is another kind of container for data,
but one in which the elements of data are identified by name rather than by
a position or a key. Often an object is mutable: values of its data attributes
can be changed. For example, a program may allow the address attribute of
a person object to be changed. The collection of the values of all the data
attributes of an object at any time is called the state of the object. To say that
an object is mutable, then, is to say that its state can change.

Other attributes of an object, besides the attributes that store data, are
operations that can be performed on the object. These operations are called
methods. A method of an object, like a data attribute of an object, “belongs
to” the object. Methods of different objects, as well as data attributes of
different objects, may have the same name but may mean different things and
may be implemented differently. These facts are central to object-oriented
programming, which we will describe in a bit more detail in Section 11.4.
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In most programming languages an object is of a particular type or belongs
to a class of similar objects. Object-oriented programming languages provide
ways for programmers to define their own classes of objects. The type or class
of an object determines what attributes (both data attributes and methods)
the object has.

We can view an object as a mapping from attribute names to values, much as
a relational-database tuple is a mapping from field names to values (recall
Section 5.3). But, turning things around, we can view an attribute of a class
as a mapping from objects of that class to values. For example, the attribute
“name” might map a “person” object to a string, the name of that person.
So, if our program needs a mapping from “person” objects to names, we have
seen two options so far (Section 9.4): we could define a function that takes a
“person” object as a parameter and returns a name; or we could build a data
structure (such as Python dictionary) that takes a “person” object as a key
and produces a name. Now we have a third option: to store the name as an
attribute of the “person” object.

An object is more than a collection of attributes, though. In a typical
programming language, an object has an identity that belongs to that object
alone. The identity of an object never changes, even if the object is mutable;
on the other hand, two objects may be of the same type or class and have all
the same attributes and state but be distinguishable by their identities. (Often
a programming language interpreter or compiler will use an object's location
in memory as the identity of the object.)

In Python (and in many other programming languages), the syntax for accessing
an attribute of an object is of the form object . attribute. For example, if boss
is a “person” object, boss.name would be the “name” attribute of that object.

In the case of a method, object.method is a function. In Python, the syntax
for calling a method is object.method(arguments). When Python executes the
call, the object is treated as one argument to the function (we will see how
this works in Section 11.2). We say that we apply the method to the object,
passing the values in the parentheses as additional arguments.
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Typically, a method uses or operates on data attributes of the object; for
example, the call boss.changeAddress(addr) might set the address attribute
of boss to addr, and the call boss.addressLabel() might return a string
containing values of data attributes of boss formatted in a way appropriate
for printing as an address label. Notice that in the latter case the method call
passes no additional arguments, which is not too unusual.

11.2. Defining classes
One key characteristic of object-oriented programming languages is that the
languages allow programmers to define their own classes of objects. We will
show how this is done in Python.

A class definition is a compound statement, whose header looks like this:

class classname :

The body of the class definition contains function definitions, which define
methods, and possibly other statements.

A class definition, when executed, implicitly defines a function for creating
objects of the class; these objects are called instances of the class. The function
is called the constructor for the class, and has the same name as the name of
the class.1

Different instances of a class have different identities. The binary operator is
compares the identity of two objects; an expression of the form a is b has the
value True if a and b are the same object and False otherwise. The operator
is not has the opposite meaning.

A class definition may contain a definition of a method with the special name
“_ _init_ _”. The _ _init_ _ method is used to initialize newly-created objects.
When a constructor is called, it first creates an object and then calls the

1This description is a slight simplification of what really happens in Python, but it will be good enough
for our purposes.

177

Defining classes



_ _init_ _ method if the class has one. Programmers find this feature of Python
so useful that most programmer-defined classes have _ _init_ _ methods.

The constructor passes the newly-created object to the _ _init_ _ method as
an argument. If the constructor is called with arguments, it passes those
arguments to _ _init_ _ as additional arguments.

Here's a simple example of a class definition:

class Person:

def _ _init_ _(self, name, dept, address):
self.name = name
self.department = dept
self.address = address

This code defines a class whose constructor is called with three arguments: a
name, an address, and a department (possibly all strings). The constructor
calls the _ _init_ _ method with four arguments: the newly-created object
followed by the three arguments passed to the constructor. In this _ _init_ _
method, the object is called self. The word self is not a keyword and has
no predefined meaning in Python, but it is a common programming convention
among Python programmers to use the name in this way. (By the way, another
common convention is to capitalize the names of programmer-defined classes.)

This _ _init_ _ method sets the values of data attributes of the new Person

object from the arguments passed to the constructor; this is a common thing
for _ _init_ _ methods to do.

In this example two of the data attributes have names that are the same as
names of parameters to _ _init_ _. The two uses of “address” (for example)
refer to different things; there is no ambiguity because of the way that Python
interprets names. A class defines its own name space, which is a mapping from
names to things bound to those names.2 The name space of a class contains
the names of data attributes and methods of the class and anything else created
within the body of the class definition. A function definition creates another
name space, which contains the function's parameters and any names of

2 Python uses its own dictionaries to construct the mappings for its name spaces.
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variables and other things created within the function body. These name spaces
are distinct from the “global” name space, which contains the names of things,
such as variables and functions, that are defined outside class definitions and
function definitions.

In the statement self.address = address (for example), the “.” operator
finds the class of self, which is Person, and looks for “address” in the name
space of that class. Since “address” on the right-hand side of the assignment
statement occurs without the “.” operator, it is not a reference to an attribute
of a class, so Python looks for it in the name space of _ _init_ _. The two
occurrences of “address” refer to completely different things, as if the
programmer had used two different names.

Now suppose we create a Person object, perhaps like this:

boss = Person("Malone", "IT", "127 Spring")

The constructor is called, _ _init_ _ is called, and then (for example) the value
of boss.name would be "Malone".

To define an ordinary method of a class, we write another function definition
within the body of the class definition, like this:

class Person:

def _ _init_ _(self, name, dept, address):
self.name = name
self.department = dept
self.address = address

def addressLabel(self):
return self.name + "\n" \

+ self.department + " Department\n" \
+ self.address

To use the addressLabel method, we would apply it to a Person object, perhaps
like this:

toTheBoss = boss.addressLabel()
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Then the object boss is bound to the parameter self in addressLabel; in this
example there are no additional arguments. As in _ _init_ _, it is conventional
but not required to use “self” as the name of the first parameter to ordinary
methods of a class.

The same program might contain a definition of another class, say Building,
that has a different collection of attributes; for example, a Building might
have a name and an address but not a department. And Building might have
methods that Person does not have, and vice versa. Also, Building might have
an addressLabel method, but its definition might be different from that of
the addressLabel method of the Person class. There would be no ambiguity,
because each class has its own name space.

11.3. Inheritance and the hierarchy of classes
A key feature of object-oriented programming languages is inheritance, which
allows a programmer to create a new class based on an existing class. Typically,
the new class is the old class with features added. Again, we will use Python
to illustrate the concept.

Suppose that we want to define a class called Customer. A Customer object is
like a Person object, but it has an additional attribute: the company that the
customer represents.

We could define another class using a definition much like the definition of
the Person class, but in which the _ _init_ _ method takes an additional
argument and creates another attribute of the newly-created object, perhaps
like this:

class Customer:

def _ _init_ _(self, name, company, dept, addr):
self.name = name
self.company = company
self.department = dept
self.address = address

But using inheritance we can reuse the definition of Person in the definition
of Customer, by referring to Person in the header of the new class definition:
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class Customer(Person):

Then we say that the class Customer inherits from the class Person. We say
that Customer is a subclass of the Person class, and that Person is the superclass
of the Customer class.

In the _ _init_ _ method of the class Customer, we call the _ _init_ _ method
of class Person to do whatever initialization needs to be done for any Person

object, and then we do any initialization that is specific to Customer objects.
To get the _ _init_ _ method of the Person class rather than the _ _init_ _

method currently being defined, we apply _ _init_ _ to the name of the class,
passing the newly-created object and any other arguments that the _ _init_ _
method of that class expects.3 This is how the code might look:

class Customer(Person):

def _ _init_ _(self, name, company, dept, addr):
Person._ _init_ _(self, name, dept, addr)
self.company = company

Then a Customer object has a company data attribute, and also all the attributes
of a Person object. Among these is the addressLabel method, which now
works the same way for a Customer object as for any other Person object.

But suppose we want the addressLabel method to work differently for a
Customer object. Perhaps we want the customer's address label to include the
name of the customer's company. We can make this happen by overriding the
method in the definition of the Customer class, adding something like this after
the definition of _ _init_ _:

def addressLabel(self):
return self.name + "\n" \

+ self.company + "," \
+ self.department + " Department\n" \
+ self.address

In Python, every piece of data is an object. All of the built-in types, such as
int and list and set, are actually classes. The functions with those names,

3 When used in this way, _ _init_ _ is an example of what Python calls a “class method”. We will
not discuss class methods further here.
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which we have called “type conversion” functions until now, are actually the
constructors for those classes.

There is a class that is more general than any other, called object. Instances
of object have no properties except for being objects. Python's built-in types
inherit from object. So does any programmer-defined class that does not
explicitly inherit from another class; Person is an example.

Any call to the constructor object(), which takes no arguments, produces an
object that is guaranteed to be different from every other object in the Python
world. Such an object has its uses. For example, recall the definition of the
generator function zip that we gave in Section 7.5:

def zip(X,Y):
it = iter(Y)
for x in X:

y = next(it, None)
if y == None:

return
else:

yield (x,y)

Here we used None as an end marker for next to return when the iterator it
terminates. We remarked that we needed to assume that None could not be
one of the values in the sequence Y. Now we can write a version of zip that
requires no such assumption:

def zip(X,Y):
it = iter(Y)
endMarker = object()
for x in X:

y = next(it, endMarker)
if y is endMarker:

return
else:

yield (x,y)

Here the test “y is endMarker” is false for any y that can possibly be an
element of Y, even another object created by another call to object(), so this
version of zip is completely general and safe.
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Programmers usually use inheritance so that a subclass is a more specific
category of things than its superclass. For example, a Person is a specific kind
of object, and a Customer is a specific kind of Person. The program containing
those classes could define a class for another specific kind of Person, say
Employee, and that class would inherit from Person. In turn, Employee could
have subclasses HourlyEmployee and SalariedEmployee; perhaps the former
would have an attribute hourlyRate and the second would have an attribute
salary, each attribute having an appropriate meaning.

The class Building might have its own subclasses, such as Office, Laboratory,
and Shop. Then the classes in the program would form a hierarchy:

object

built-in types
Person

Customer

Employee

HourlyEmployee

SalariedEmployee

Building

Office

Laboratory

Shop

other programmer-defined classes

Python uses the hierarchy of classes to find attributes of objects, whether the
attributes are data attributes or methods. For example, suppose that emp is an
instance of SalariedEmployee, and suppose that the program contains a
reference to emp.attr. Then Python would first look for attr in the name
space of SalariedEmployee. If there is no such attribute there, Python would
look in the name space of Employee, and so on up the hierarchy of superclasses,
and use the first binding that it finds.
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11.4. Object-oriented programming
Object-oriented programing is an important style of programming in the
modern software world. The subject is rather complex, and a comprehensive
treatment of it is beyond the scope of this book, but here we will introduce
some of the basic concepts of object-oriented programming as they relate to
the subject matter of this book.

In object-oriented programming, much or all of the central data in a program
is held in instances of programmer-defined classes. Each class defines the
implementation of a kind of object, usually in terms of lower-level variables
and data structures, which are the data attributes of the class. The class
definition also includes definitions of operations on objects of the class, in
terms of code that operates on the data attributes; these operations are the
methods of the class. One advantage of object-oriented programming is that
class definitions conveniently group the data of an object together with the
methods that operate on that data.

Another advantage is that class definitions can isolate implementation decisions
from the rest of the program. For example, suppose that we are writing a
program that requires several multisets. We can define a Multiset class, with
methods for the multiset operations that we will need, such as sum and count

(see Exercise 1). The data structure that stores the members of the multiset
will be a data attribute of the class, and the methods will operate on this data
attribute.

As we saw in Section 9.5, there are at least two reasonable Python
implementations for a multiset: a list or a dictionary. If the rest of the program
accesses the data attributes of the Multiset class directly, all the code that
does so will be different depending on which implementation we choose. But
if the rest of the program accesses multisets only by using the methods of the
class, the only code that depends on our implementation decision will be in
the bodies of the methods. We can even change our implementation decision
later, perhaps changing from the dictionary representation to the list
representation or vice versa, and the only code that we will need to change
will be in the bodies of the methods.
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Most object-oriented programming languages allow a programmer to say that
an attribute is private, meaning accessible only within the class definition. The
body of a method of the class can access a private attribute, but code outside
the class definition is prevented from doing so, enforcing the isolation of the
attribute from the rest of the program. In Python an attribute is made private
by giving it a name beginning (but not ending) with two underbar characters.4

If all data attributes of a class are private, the only access to instances of the
class from the rest of the program is through the methods. The programmer
has complete freedom to change the set of data attributes and how they
represent the state of an object. If the set of methods and their meanings is
unchanged, nothing in the code that uses the class will need to be changed,
no matter how radical the change in the data attributes may be; only the bodies
of some or all of the methods will need to be changed.

The case study that follows will illustrate these ideas.

11.5. A case study: moving averages
As a case study, let's develop a class definition to implement a moving average
of a stream of data. The programming problem is very simple, but we will use
the case study to illustrate the possible thought process of an experienced
programmer developing a class definition using object-oriented programming.

A moving average of a stream of numbers (or at least the kind of moving
average that we will discuss here) is the average of the most recent n numbers
for some fixed n. Typically, the data in a moving average is a time series of
data, which is a sequence of data values taken at equally-spaced instances in
time. A moving average tends to smooth out the data and minimize the effects
of random fluctuations and measurement errors. For example, in the U.S.,
economic statistics such as unemployment claims and housing starts are often
reported weekly or monthly, as current numbers but also as moving averages
over a period such as four weeks or three months. Some economists consider
the moving averages to be the more meaningful numbers.

4 A devious programmer can access a private attribute in Python, but not in an obvious or convenient
way.
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The temperature data plotted with black circles in Figure 1.1 (page 15) is an
example of a time series. Figure 11.1 shows the same data with a moving
average shown as a dotted line; here n is 4. Notice that the moving average
is not shown until there are at least n data points. Notice also that the moving
average seems to lag behind the data points; this is because the moving average
on each day is the average of the data for that day and the preceding n-1 days.
(There is another kind of moving average that would use an equal number of
data points before and after the day.)

Figure 11.1. Temperatures over a month, with moving average

Let us define a Python class of moving averages. We begin by deciding what
operations we will need to perform on a moving average. We decide that we
will need these methods:

• A constructor. Let us suppose that in our program we will need several
moving averages, possibly over different numbers of data values. We decide
to make the number of values a parameter of the constructor.

• A method to append a value to the sequence.

• A method to return the current value of the moving average.
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Thus the class definition will look like this, in broad outline:

class MovingAverage:

def _ _init_ _(self, nPoints):
...

def append(self, newValue):
...

def value(self):
...

Here is some simple code that uses the MovingAverage class. The generator
function smooth iterates over the stream data and generates a second stream,
the moving average. The number of points in the moving average is the second
parameter of smooth.

def smooth(data, nPoints):
avg = MovingAverage(nPoints)
for value in data:

avg.append(value)
yield avg.value()

Before we fill in the bodies of the methods of the MovingAverage class, we need
to decide on the representation that we will use for the data.

Conceptually, the data coming in is a sequence; we will give the data values
to a MovingAverage object using a sequence of calls to the append method. As
stored by the MovingAverage object, the values will apparently be a mutable
sequence, so a Python list is the obvious choice to store them.

Should we store all the data values? If we do, the list will grow without limit.
This may not cause performance problems in most situations, but it is possible
that our code might be used in a program that is left to run for a very long
time. It is good practice to avoid (whenever possible) memory usage that grows
without limit, and we will never need to use more than the most recent n data
values anyway. Let's plan to store only n values at most.

Here's a question that we will need to face before long: the moving average
will be well-defined as soon as n values have been appended, but what happens
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until then? We could define the moving average to be the average of the number
of points that we have if that number is less than n, but what happens before
any points at all have been appended? Let's assume, at least for now, that for
our purposes it is acceptable to let the moving average be undefined until there
are at least n data points.

Then let's use a data attribute to hold the sequence of up to n data points; the
attribute will be a list, initially empty. Let's name the attribute “_ _points”;
the two leading underbar characters make the attribute private to the class.
We will also need to store the value of n; let's store it as the private data
attribute _ _nPoints. Then the _ _init_ _ method looks something like this:

def _ _init_ _(self, nPoints):
self._ _points = [ ]
self._ _nPoints = nPoints

To implement the append method, we remove a value from the front of the
list if it already contains n values, and then place the new value at the end of
the list.

Here's the most obvious code to make both of those changes. Notice that each
assignment statement creates a new list.

def append(self, newValue):
if len(self._ _points) == self._ _nPoints:

self._ _points = self._ _points[1:]
self._ _points = self._ _points + [ newValue ]

But it is more efficient to modify the list in place if possible, and we can use
the list append method instead of list concatenation to append the new value.
(Notice that the append method that we are defining is distinct from the list
append method; they are in different name spaces.) As it happens, Python has
a method that will do the removing in place as well: it is pop(i), where i is the
position of the element to be removed. Using the append and pop list methods,
the append of MovingAverage now looks like this:
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def append(self, newValue):
if len(self._ _points) == self._ _nPoints:

self._ _points.pop(0)
self._ _points.append(newValue]

And we can simplify this code a bit by creating an alias for self._ _points.
Recall (see Section 6.3) that the alias points refers to the same list object as
self._ _points does, so that modifying points modifies self._ _points as
well.

def append(self, newValue):
points = self._ _points
if len(points) > self._ _nPoints:

points.pop(0)
points.append(newValue]

The first draft of the value method might look like this. We return None if the
moving average is undefined; it is the responsibility of the code that uses the
MovingAverage class to test for None where necessary and do something
appropriate.

def value(self):
points = self._ _points
length = len(points)
if length == self._ _nPoints:

return sum(points) / length
else:

return None

Now notice one interesting fact: most of this code will work just as well if
length is less than self._ _nPoints, as long as length is not zero. In that
situation we will be returning the average of fewer than n values, but for some
purposes this value may be better than nothing.

def value(self):
points = self._ _points
length = len(points)
if length > 0:

return sum(points) / length
else:

return None
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Figure 11.2 is a version of Figure 11.1 with the moving average shown
according to this extended definition.

Figure 11.2. Temperatures with an extended moving average

Let's make one more improvement to the code. Both append and value compute
len(points) every time they are called. Most of the time this will be redundant
computation; in fact, once the list contains n data values, the length will never
change again. We can save the length as another hidden attribute, initialize
the attribute appropriately and update it when the length of the list changes,
and use the attribute most of the time instead of recomputing the length of
the list. This tactic is similar to the technique of memoization that we saw in
Section 9.4.

With these modifications, we have the class definition shown below as
Example 11.1. Notice the documentation in comments; this is the sort of
documentation that normally accompanies a class definition. The block of
comments before the class definition describes the external interface of the
class, the things that a programmer needs to know to use the class. The block
of comments within the class definition describes internal details of the class,
such as private attributes.
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Example 11.1. The MovingAverage class
# MovingAverage: a moving average of a sequence
# of numbers.
# MovingAverage(n) constructor, where n = number
# of values to average over
# append(self, a) append a to the sequence
# value(self) average of the n most recently
# appended values, or of all if
# fewer than n; None if none

class MovingAverage:

# private attributes:
# _ _nPoints nunber of values to average over
# _ _points list of at most that many values
# _ _length length of _ _points, kept current

def _ _init_ _(self, nPoints):
self._ _points = [ ]
self._ _length = 0
self._ _nPoints = nPoints

def append(self, newValue):
points = self._ _points
if self._ _length == self._ _nPoints:

points.pop(0)
else:

self._ _length += 1
points.append(newValue]

def value(self):
points = self._ _points
length = self._ _length
if length > 0:

return sum(points) / length
else:

return None

So far so good. This implementation of Moving Average will be perfectly good
for many purposes. But will it be efficient enough for all purposes? We might
be able to tell if we know how the class will be used.
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Suppose that in a particular program the value method is called much more
frequently than the append method. Perhaps the stream of data produces new
values rather infrequently, as in the case of a weekly or monthly economic
statistic. But perhaps the code is part of a popular web site that receives many
requests per second for the value of the moving average.

In a situation like this, the value method often recalculates the average
unnecessarily when the data values have not changed. We can eliminate this
redundant computation by calculating the average whenever append is called
and storing the value as another private attribute, which the value method
can use when it is called. Again we are using memoization, and now value is
implemented by accessing data instead of by performing a computation.

With this modification, MovingAverage might be defined as shown below in
Example 11.2. The new data attribute is _ _value; notice that it doesn't even
exist until self._ _length is greater than zero, but we never use its value until
then.

Version 2 of MovingAverage is not necessarily better than the original version
in all situations. Suppose now that append is called much more frequently than
value. Perhaps the stream of data is a physical measurement from a jittery
sensor and arrives thousands of times a second, but the value of the moving
average is required only once a second or once a minute. Then append computes
the moving average many times when it is never used.

Thanks to object-oriented programming, though, the two versions of
MovingAverage are completely interchangeable in any program. The external
interface to the class, as documented in the blocks of comments before the
class definition headers, is identical in the two versions. We can measure the
efficiency of a program and substitute version 2 for the original version, or
vice versa, to try to improve efficiency any time we like. No code that uses
the class, such as the code in the smooth function (p. 187), would need to be
changed in any way.
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Example 11.2. The MovingAverage class, version 2
# MovingAverage: a moving average of a sequence
# of numbers.
# MovingAverage(n) constructor, where n = number
# of values to average over
# append(self, a) append a to the sequence
# value(self) average of the n most

recently appended values

class MovingAverage:

# private attributes:
# _ _nPoints number of values to average over
# _ _points list of at most that many values
# _ _length length of _ _points
# _ _value average of values in _ _points
# justification for memoizing _ _value: value() is
# called much more frequently than append()

def _ _init_ _(self, nPoints):
self._ _points = [ ]
self._ _length = 0
self._ _nPoints = nPoints

def append(self, newValue):
points = self._ _points
if self._ _length == self._ _nPoints:

points.pop(0)
else:

self._ _length += 1
points.append(newValue]
self._ _value = sum(points) / self._ _length

def value(self):
if self._ _length > 0:

return self._ _value
else:

return None
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11.6. Recursively-defined objects: trees
In the examples that we have seen so far, the values of the data attributes of
programmer-defined classes have been values of built-in Python types, but
they can also be objects that are instances of other programmer-defined classes.
For example, consider the attribute address in the Person and Customer classes
of Sections 11.2 and 11.3. The values of address were strings, but if we had
an Address class (perhaps having its own attributes such as street, city, and
so on), the values of address could be Address objects instead (with appropriate
changes to the addressLabel methods, of course).

In fact, the value of an attribute can be an instance of the same class that is
being defined. For example, suppose that we are defining a class Person. Two
of the attributes of a Person object might be the person's mother and father.
The values of these attributes might themselves be Person objects.

Then the Person class is defined partly in terms of itself, much as a recursive
function is. We say that an instance of this class is a recursively-defined object.
Recursively-defined objects are important in computer science, and knowing
how to work with them is a useful programming skill.

Let's consider one kind of recursively-defined object: the tree. We saw trees
briefly in Section 6.6. There are a number of ways of describing trees in
mathematics and computer science, and we'll look at several of them, including
recursive descriptions.

In the study of graphs, a tree is a kind of graph. A tree can be either a directed
or an undirected graph. We will concentrate on directed trees of a particular
kind: those that have a distinguished vertex called the root from which paths
radiate. Trees of this kind can be defined by the following two properties:

• There is one and only one vertex with no edges leading to it. That vertex
is the root of the tree.

• Each other vertex has one and only one edge leading to it.
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These properties imply that for every vertex in the tree, there is a path from
the root to that vertex, and no more than one. Paths in a tree never converge.

If a tree is finite (and we will consider only finite trees), it must have leaves,
which are vertices with no edges leading from them.

Here is an example of a tree. This one is unlabeled, and this time the root is
at the top of the picture and the leaves are toward the bottom.

Now here is a recursive definition that defines trees of the same kind:

A tree is either

• a leaf, or

• a vertex (the root) with edges to one or more subtrees, which are
trees defined in the same way.

Let's look at variations on the recursive definition of a tree. Here is one:

A tree is either a leaf, or an object containing one or more subtrees,
which are trees defined in the same way.
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Here, instead of speaking of edges to the subtrees, we speak of the subtrees
as being contained in the larger tree. The trees are nested, much as expressions
and compound statements in Python are nested.

This is the view that we often take in programming, especially when
programming with objects. Instead of a tree being a graph with edges, it is an
object that has other trees as attributes. The edges may actually be present
anyway, as bindings or pointers, depending on how the programmer or the
programming language implements the tree objects. Sometimes we think of
the edges explicitly when visualizing a tree or drawing a picture of it, but often
we don't.

Here is another definition that is slightly different:

A tree is either empty, or is an object containing one or more subtrees,
which are trees defined in the same way.

With this definition, a leaf is a tree all of whose subtrees are empty.

This definition allows a tree to be nothing at all, which makes no sense in
many contexts. However, empty trees can be useful in programming, as we
will see.

In computer science work, vertices of a tree are often labeled; in fact, sometimes
a vertex has more than one piece of data attached to it. If trees are programmed
as objects, each vertex is represented by a tree object, and its attributes are
the labels and other data as well as the subtrees.

The data attached to different vertices can be of different kinds. Here is a
typical example of a computer-science tree: it represents an expression.
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The expression is “x + y*z”; perhaps it is part of a program. The leaves are
labeled with the names of variables, and the other vertices are labeled with
operators. Programming-language interpreters and compilers often use similar
trees to represent expressions and other parts of programs.

Trees are ideal for representing nested structures like expressions. They are
also useful for representing information of many other kinds, including
hierarchy relationships. The tree below represents a hierarchy of classes and
subclasses like the one presented in Section 11.3. (This is an example of a tree
that is not binary.)

In common English usage there are “trees” that are actually trees in the
mathematical sense, structures like those that we have been discussing. They
are family trees.
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There are two kinds of tree that are commonly called “family trees”: one
shows the ancestors of a given person, and the other shows the descendants
of a given person. We will consider the first kind, which we will call an
“ancestry tree”.

Figure 11.3 shows an ancestry tree for a certain person named William. In
this diagram older people are toward the top and younger people are toward
the bottom, so the root of the tree is at the bottom. The edges point from a
person to the person's father (up and toward the left) and mother (up and
toward the right). Of course, the tree does not show all of William's ancestry;
there are people in the tree (the leaves of the tree) whose fathers and mothers
are not represented in the tree.

Figure 11.3. An ancestry tree

Notice the subtrees, which are trees of the same kind as the larger tree. For
example, the tree whose root is labeled “Charles” is an ancestry tree for
Charles.

Now let's see how we might represent such a structure as a recursively-defined
object in a program.
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Using Python as always, let's define a class called Person. Each instance of the
class will represent a person in an ancestry tree, and will have the attributes
name, father, and mother. Here are the class heading and the constructor:

class Person:

def _ _init_ _(self, name, father, mother):
self.name = name
self.father = father
self.mother = mother

Then we can construct William's ancestry tree by using code like the following.
We construct Person objects for parents first, so that we can use those objects
as values for the values of the father and mother attributes for younger people.
We use the value None for the father and mother of people at the leaves of the
tree; of course this means that the tree contains no information about the
parents of these people, not that they have no parents!

george = Person("George", None, None)
elizabeth = Person("Elizabeth", None, None)
elizabeth2 = Person("Elizabeth", george, elizabeth)
philip = Person("Philip", None, None)
charles = Person("Charles", philip, elizabeth2)
diana = Person("Diana", None, None)
wiliam = Person("William", charles, diana)

This code is only for illustration. In practice, especially for a larger tree, we
would probably want to get the data from a file rather than hard-coding it
into the program (see Exercise 4).

Now, once we have a tree or other recursively-defined object, how can we
process it? Here is a very important principle:

A computation that processes a recursively-defined data object is likely
to be recursive itself, with its structure following the recursive definition
of the object.

For example, here, in broad outline, is the structure of many computations
that process trees:
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To process a tree:
if it is a leaf:

do something with the data in the leaf
else:

do something, possibly different, with the data in the root
and recursively process each of the subtrees
and combine the results

Not all computations on trees can be made to fit this pattern. But if a
computation can, it is likely to be simpler and more obviously correct than a
computation that does the same job in some other way.

Here's an example. Let's write a method for the Person class to construct a
set of the names in the ancestry tree of a person.

We'll follow the above recursive pattern. Whether or not the Person is a leaf,
we'll start by taking the name of the person, as a one-element set. Then, if the
person's father is represented in the tree, we add the names in the ancestry
tree of the father, and similarly for the person's mother. Notice that the “+”
in the augmented assignment operator “+=” is set union.

def ancestorNames(self):
result = { self.name }
if self.father != None:

result += ancestorNames(self.father)
if self.mother != None:

result += ancestorNames(self.mother)
return result

This solution is not bad, but we can simplify it. Consider the recursive
definition of a tree that allows a tree to be empty. It makes no sense for an
ancestry tree for a person to be empty — it always includes the person at least
— but suppose we let the father or mother attribute of a Person object be an
empty tree? Then a value of None, instead of being a marker that indicates
missing information, represents an empty subtree.

Now, instead of having to test each subtree for the None value, we simply let
the empty tree be the basis case for the recursion. The set of names in an empty
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ancestry tree is the empty set, of course. Following this line of reasoning, we
arrive at the following solution:

def ancestorNames(self):
if self == None:

return set() # the empty set
else:

return { self.name } \
+ ancestorNames(self.father) \
+ ancestorNames(self.mother)

This code is not only simpler, but more closely follows the pattern of code for
a recursive function definition that we have often seen, going back to the
factorial function of Section 4.2. The basis case and the recursive case are
clearly separated, so that it is easier to see at a glance that the method body
computes what we want.

This example illustrates two principles:

1. It's fine to choose a mathematical definition that makes your programming
job easier, or to tweak a definition to your advantage.

2. Don't tweak the code and ignore the mathematical definition! Pick a
definition, make sure that it says what you want, and then write the code
to match the definition.

11.7. State machines
The state of an object is information that the object retains from one method
call to another. A method may cause the object to change state (as the append
method of a MovingAverage object does), and the result of a method call may
depend on the object's state (as in the case of the value method).

In designing objects in programs, it is sometimes useful to think explicitly of
states and transitions between states. This is especially true when the number
of possible states of an object is finite and rather small. Then we can give each
state a name.
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Furthermore, we can show the behavior of the object by drawing a transition
diagram. This is a particular kind of a labeled directed graph, in which each
vertex is labeled with the name of a state and each edge is labeled with the
name of a stimulus or input that causes a transition from one state (at the tail
of the edge) to another (at the head).

A transition diagram defines a state machine, which in computer science theory
is a kind of mathematical object. Most mathematical properties of state
machines are beyond the scope of this book, but we'll simply use state machines
and their transition diagrams to help us describe and design objects. Software
designers often do this, and so do other professionals such as hardware
designers.

For example, consider the kind of electrical pushbutton that you click once
to turn on and click again to turn off. We can describe it as a state machine
having two states, off and on, and a single stimulus called “click” that causes
a transition from each state to the other. Here is the transition diagram for
that state machine:

Now consider a slightly more complicated kind of elecrical device. When you
click it, it works like the previous kind of pushbutton. But there's no way of
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looking at the button to tell whether it is on or off, so the manufacturer has
added a “reset” capability: when you press and hold the button down for
several seconds, it turns off, whether it was on or off before. Here's the
transition diagram for the corresponding state machine:

We can define a Python class whose objects behave like this device does, and
we can use the transition diagram as a guide as we write the code. The state
of the object will be stored in a private data attribute. There are only two
states, so the attribute needs to have only two possible values. Boolean values
are one obvious choice: we name the attribute _ _on, and we use the value
True to represent the state on and False to represent the state off.

The _ _init_ _ method sets the _ _on attribute to an initial value; we arbitrarily
choose False. The effect of the “click” stimulus is implemented by a method
with that name. It sets the value of _ _on to True if it was False and False if
it was True; we could use an if-statement to do this logic, but the Boolean not

operator does the same thing more easily. The “reset” stimulus is handled by
another method, which simply sets _ _on to False. The method isOn returns
the value of the attribute as a Boolean value. All this code is very simple; it is
shown as Example 11.3.

Now let's look at an example of a state machine object that does a typical
kind of programming job: finding fields in a string. Perhaps the string is a line
from a flat file, as in Section 8.4, but in the current example the fields are
separated by sequences of one or more space characters, rather than by commas
as in a CSV file; there may also be spaces at the beginning and end of the
string. A field may contain any character that is not a space. We want to
deliver the fields of a string as a sequence, perhaps as a stream.
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Example 11.3. The Pushbutton class
class Pushbutton:

def _ _init_ _(self):
self._ _on = False

def click(self):
self._ _on = not self._ _on

def reset(self):
self._ _on = False

def isOn(self):
return self._ _on

There are a number of ways of doing the job, but we'll show how to do it
with the aid of a state machine. Here's the concept: the state machine will
receive one character at a time from the string as a stimulus, and keep track
of whether the currect character is within a field or within a sequence of spaces;
those will be the two states of the machine. The state matters, because a
character can mean different things depending on its context; for example, a
space coming after other spaces means nothing and can be ignored, but a
space coming after non-space characters signals the end of a field.

The notation of transition diagrams has a number of variations, and we'll use
two of them in this example:

• An arrow pointing from outside the graph to one of the states, denoting
the initial state of the machine; that is, the state that the machine starts in
when it is created or turned on.

• An additional label on each transition, which is the name of a response to
a stimulus. For example, a stimulus may be an input to a device, and the
response would be the corresponding output. The response is what the
machine does when it is in a particular state and receives a particular
stimulus.
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In our state machine, the stimuli will be characters from the string that we are
taking apart, and the responses will be the “meaning” of each character in
the context of the characters that have come before it. The different responses
that we will need are:

• “include”: the character is part of a field.

• “ignore”: the character means nothing and can be ignored.

• “end”: the character signals the end of a field, but is not part of the field.

Here is the transition diagram for the state machine. The two states are labeled
“in spaces” and “in field”. Since the string may start with spaces, the initial
state is “in spaces”. In this state, a stimulus of a space character sends the
machine back to the same state, and the response is “ignore”. Any other
character is the first character of a field, so the machine goes to the state “in
field” and the response is “include”. (You can think of the annotation “non-
space” as indicating that this edge in the graph is a shorthand for many edges,
one for each possible character that is not a space.) In the state “in field”, any
character but a space sends the machine back to the same state, with the
response “include”. A space signals the end of the field, so the machine goes
back to the state “in spaces” and the response is “end”.

Now we can translate this transition diagram to Python code. There's one
data representation decision to make: how will we represent the different
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states of the machine and the different responses? Both collections are sets:
they have no particular order and all elements are different. But it turns out
that we won't need to do any set operations on these sets; we will only need
to compare two values for equality. In a situation like this, we can simply
represent every element of each set as a small integer value, as we noted in
Section 8.5.

inField = 0
inSpaces = 1

include = 0
end = 1
ignore = 2

And now we write a class definition for the state machine that we want; the
code is Example 11.4. The state of the machine is the data attribute self.state,
and the constructor sets it to the initial state. We provide a method advance

that takes a character as a stimulus and performs one state transition, setting
the new state and the response depending on the old state and the character.
We return the response as the value of the method call.

Example 11.4. A state machine for finding fields in a string
class FieldsStateMachine:

def _ _init_ _(self):
self.state = inSpaces

def advance(self, char):
if self.state == inField:

if char == " ":
self.state, response = inSpaces, end

else:
self.state, response = inField, include

else: # self.state == inSpaces
if char == " ":

self.state, response = inSpaces, ignore
else:

self.state, response = inField, include
return response
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The code that uses the state machine is shown as Example 11.5. We define a
generator function that yields fields of a string one at a time. We feed each
character of the string to the state machine. We accumulate the characters of
a field in the variable field, appending a character to it if the machine's
response to the character is “include”. If the response is “end”, we yield the
field and start a new one. When we reach the end of the string, the last field
may not have been ended by a space at the end of the line; in this case, we
yield that last field.

Example 11.5. Code that uses a FieldsStateMachine
machine = FieldsStateMachine()

def fields(string):
field = ""

for c in string:
response = machine.advance(c)
if response == include:

field += c
elif response == end:

yield field
field = ""

# else response == ignore: pass

if field != "":
yield field

So far so good. But this example is very simple, and the code doesn't do
anything we couldn't do more easily in other ways, such as with the Python
split method. Now let's add a complication or, as we say in the software
world, a “feature”.

Suppose that a field in the input file is allowed to contain spaces. Perhaps a
field is the name of a city, so that cases like “Los Angeles” and “East St. Louis”
must be allowed. Then when a field may contain a space, it is enclosed in
double-quote characters, like this: "East St. Louis". The double-quote
characters are not considered part of the data that the field represents.
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Now our state machine must contain a new state and some new transitions.
In the state in spaces, a double-quote character causes a transition to the new
state in quoted, meaning inside a quoted field; the double-quote character is
ignored. The machine stays in that state until a double-quote character is
received, which ends the field. The new state transition diagram is shown
below; “quote” means a double-quote character.

The revised code for the state machine is shown as Example 11.6. The changes
are easy to make, once we have the new transition diagram: we just need to
add code for the new state and the new transitions. The body of advance may
look long and complex, but its structure is quite regular, and we can easily
compare the various parts to the corresponding parts of the transition diagram
to make sure that we have written the code correctly.

By the way, computer scientists have observed that a monoid can be defined
from transitions in a state machine, and computer science theory develops the
implications of this fact. Those results are not immediately relevant in day-to-
day programming, though, so we won't present the details here. Let's just use
the observation to reinforce the idea that, in computing, monoids are
everywhere.
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Example 11.6. A state machine for finding fields, version 2
inField = 0
inSpaces = 1
inQuoted = 2

include = 0
end = 1
ignore = 2

class FieldsStateMachine:

def _ _init_ _(self):
self.state = inSpaces

def advance(self, char):
if self.state == inField:

if char == " ":
self.state, response = inSpaces, end

else:
self.state, response = inField, include

elif self.state == inQuoted:
if char == '"':

self.state, response = inSpaces, end
else:

self.state, response = inQuoted, include
else: # self.state == inSpaces

if char == " ":
self.state, response = inSpaces, ignore

elif char == '"':
self.state, response = inQuoted, ignore

else:
self.state, response = inField, include

return response

Terms introduced in this chapter
superclassattributes of an object
overriding a methodstate of an object
private attributeclass
recursively-defined objectidentity of an object
rootinstance

209

Terms introduced in this chapter



leafconstructor
subtreename space
state machineinheritance
transition diagramsubclass

Exercises
1. Write a Python class Multiset that is based on dictionaries. The class

must implement the methods isEmpty, count, intersection, union, and
sum.

In Python a programmer-defined class can inherit from a built-in class,
so you might try making your Multiset class inherit from the dict class.
What are the advantages and disadvantages of doing so?

2. Write a Python class Monoid. Give it at least the following methods:

• An _ _init_ _ method that takes two arguments, a two-argument
function that implements the monoid operation and a value for the
monoid identity. For example, here's how the class constructor might
be called:

integerAddition = Monoid(lambda x,y: x+y, 0)

• A method apply that takes two parameters, applies the monoid
operation (the function that was the first argument to the constructor)
to them, and returns the result.

• A method reduce that takes an iterable of values as a parameter and
reduces its elements to a single value, using the monoid operation and
the monoid identity, much as the reduce method of Section 6.4 does.

3. Write a variant of the MovingAverage class that is suitable for data that is
not equally-spaced in time. The argument to the constructor, instead of
being a number of data points, will be a duration (in appropriate units,
such as seconds or days) over which the moving average is to be computed.
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The argument to the method append will be an ordered pair of a time (in
the same units) and a data value that corresponds to that time.

4. Design the structure of a file that a program could read to build an ancestry
tree of the kind we saw in Section 11.6. Be aware that in an ancestry tree
it is not too uncommon for two or more people to have the same name;
a name does not uniquely identify a person in the tree.

Write a method for the Person class to read a file with this structure.

5. a. Write a method ancestors for the Person class that constructs the set
of all ancestors of a person (including the person), not just the set of
ancestors' names. Perhaps there are several people with the same name
but differing in other attributes that we haven't mentioned so far, such
as birth and death dates; you want to include everyone who is an
ancestor.

b. Now how can you find the set of ancestors of a given person, not
counting that person? No, don't try to write a method that makes the
original person a special case! Do it an easier way.

c. Using your ancestors method, how can you construct the set of
ancestors' names? Do it with a single Python expression.

6. Add attributes born and died to the Person objects of Section 11.6; their
values will be integers, representing the years in which the person was
born and died. Use None for the value of died for a person who is still
alive.

Write a method that takes self and a year as arguments, and returns the
set of ancestors of a person (including the person) who were alive during
the given year.

7. Modify the Person class of Section 11.6 so that it can be used to construct
a tree of descendants of a person. Then a Person object will have attributes
that are the children of the person rather than the parents. How will you
represent the collection of children of a person?
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Write a method for this class that constructs the set of descendants of a
person, including the person.

8. Modify the fieldsStateMachine class of Section 11.7 to add one more
feature: a quoted field may now contain a double-quote character as part
of the data that the field represents. The two-character sequence “\"”
now represents a double-quote character within the field. Also, so that a
quoted field can still contain a “\” character as part of the data that the
field represents, the two-character sequence “\\” now represents a single
“\” character within the field. In fact, to simplify things, let's say that a
“\” character followed by any character represents the second character.
Draw the new state transition diagram, and then write the corresponding
code.

9. Design the structure of a file to encode the kinds of transition diagrams
shown in Section 11.7: the states, initial state, stimuli, responses, and
transitions. Now write a program that will read such a file and produce
as output an advance method like the one in Example 11.6.

Such “code-generating” programs are used by writers of programming-
language interpreters and compilers to help produce code for such jobs
as finding the names, keywords, constants, operators and punctuation
marks in lines of programs.
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Chapter 12
Larger programs
12.1. Sharing tune lists

In this chapter we'll examine how we might apply the ideas presented in this
book to larger programming problems. We won't present whole programs —
they would take too much space in the book and would be tedious to read in
their entirety anyway — but we'll sketch how the programs might be designed
and, especially, how mathematical structures might be used in the designs.

Here's our first case study. The task is to build a program to make it easy for
friends to share lists of their favorite tunes from those that they play on their
computers and mobile devices.

The program will allow people to send recommendations to their friends, as
you would expect, but it will also keep track of the songs that a person plays.
It will send lists of the tunes that the person has played most often, perhaps
once a week, to all of the person's friends through the wireless connections
on their devices. It will also receive tune lists from the friends and compile
them into a single list arranged by popularity. People can use these tune lists
as recommendations, and look up the tunes in their own tune libraries, or (for
example) look for other tunes by the same artists.

That's the statement of the problem in brief. Now let's see how we might
design the program. We'll show some fragments of the actual Python code
too.

A “tune list” is a sequence, in order by some measure of popularity, but not
necessarily a list in the Python sense. Each tune has a number of attributes:
artist, title, composer, perhaps genre, and so on. Our program will process
the attributes of tunes, not the sound files themselves. A tune is identified by
its collection of attributes. If all the tunes came from one source, such as a
particular company's online music store, we could use something like the
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catalog number in the store to identify a tune, but we assume that the tunes
can come from a number of different sources, including home recording.

We'll represent a tune by a Python tuple, in which the first element is the artist,
the second element is the title, and so on for as many attributes as we want
to include. Other representations are possible (see the exercises at the end of
the chapter), but the tuple representation will lead to a simple design. A tuple
is an immutable object, so we can form sets of them and use them as dictionary
keys. Let's call each of these tuples a “tune-tuple”.

Each attribute will be at a fixed position in every tune-tuple. To access
attributes by name, we define a set of functions that map a tune to one of its
attributes:

def artist(tune):
return tune[0]

def title(tune):
return tune[1]

and so on for all the attributes that we want to access by name.

A person's tune library will be represented by a set of tune-tuples, forming a
relation if we want to think of it that way. The data will come from a file that
is in a variant of CSV format: each line represents a tune and contains its
attributes separated by vertical-bar characters (“|”). This format allows
attributes such as tune titles to contain commas, which is not too uncommon.
We can build the set of tune-tuples using a variant of the setOfTuples function
from Section 8.4. Here is the definition we use; we simply split on vertical-bar
characters instead of commas. Notice the set comprehension.

def setOfTuples(fileName):
file = open(fileName)
return { tuple(line.strip().split("|"))

for line in file }

Then if the data file is named “myTunes”, we do this to build the set-of-tuples
structure:

myTunes = setOfTuples("myTunes")

214

Sharing tune lists



As a person plays tunes, the tunes are communicated to our program (by
means that are beyond the scope of this book) as a stream of tune-tuples. Our
program accumulates the tune-tuples in a multiset. We use a multiset, not a
set, because of course the person can play the same tune more than once, and
one of our goals is to count how often each tune is played.

We define a class of multisets, since (as you'll see) we'll need several of them.
We implement a multiset as a mapping from values to counts, using a
dictionary as we did in Section 9.5; we keep the dictionary in a private data
attribute. We provide a tally method like the function of that name that we
defined in Section 9.5.

class Multiset:

def _ _init_ _(self):
self._ _count = {}

def tally(self, value):
if value in self._ _count:

self._ _count[value] += 1
else:

self._ _count[value] = 1

We create a Multiset object named plays, and as a person plays tunes, the
tune-tuples are entered into it:

plays.tally(tune)

In the class Multiset, we provide another method to extract a tune list from
the plays multiset. The method is called topN, and returns the n tunes with
the most plays, highest first. Here n is an argument, to let the user set the
number as a preference; there is nothing magical about the number ten. In
any case, to get a play list of the top 10 tunes, we would write something like
this:

playList = plays.topN(10)

There are several ways that topN could produce the required list. Here are two
of them:
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1. Produce the contents of _ _count as a sequence of ordered pairs in which
the count comes first and the tune tuple comes second:

byCount = ( (count, tune)
for (tune, count) in items(self._ _count) )

Sort that sequence using the builtin function sorted, which produces a list
in ascending order of count (and, within subsequences of equal count, in
ascending order of tune-tuple, but that's not so important). Reverse the
result (the Python library has a list method reverse), take a slice of the first
n elements of the resulting sequence, and produce a sequence of just the
tune-tuples from the ordered pairs using a comprehension.

2. The builtin function sorted can, with extra arguments, do most of the work
and produce a list sorted by count in reverse order in one step. This method
requires some Python that we haven't covered in this book, but if you're
interested you can look in the Python documentation for the function sorted

and the phrase “keyword argument”.

However topN does it, we get a sequence of the tunes that the user has played
most often, and we transmit the sequence to each of the user's friends in the
same CSV form that we use for the user's tune library. (As with the stream of
the user's plays, we won't discuss how the program sends or receives tune
lists.) The collection of friends is a set: perhaps a set of online addresses, or a
set of objects each having a person's online address as an attribute.

Meanwhile, the program receives (we won't discuss how) tune lists and
recommendations from the friends. A recommendation is a tune-tuple and a
message (probably a comment about the tune) in some suitable format; the
program represents the recommendation as an ordered pair of a tune-tuple
and a string. The program collects the tune lists in a set called friendsLists

and the recommendations in another set called friendsRecommendations.

The program will be able to display all the tune lists and recommendations,
but the program will also be able to tabulate both and produce aggregated
tune lists. Like the user's plays, these are multisets at first and are then
converted into sorted sequences. Unfortunately, we can't write multiset
comprehensions in Python, but we can still construct the multisets easily using

216

Sharing tune lists



for-statements and tally. For example, to produce a list of the tunes with the
ten highest number of mentions in the tune lists of the friends, here's how the
code might look:

allMentions = Multiset()
for fList in friendsLists:

for tune in fList:
allMentions.tally(tune)

topTenMentions = allMentions.topN(10)

Or to produce a list of the ten tunes that are first in the greatest number of
tune lists of the friends:

allMostPopular = Multiset()
for fList in friendsLists:

allMostPopular.tally(fList[0])
topTenMostPopular = allMostPopular.topN(10)

Or to produce a list of the ten tunes recommended by the most friends (recall
that the first element of a recommendation pair is the tune-tuple):

allRecommended = Multiset()
for rec in recommendations:

allRecommended.tally(rec[0])
topTenRecommended = allRecommended.topN(10)

We could also produce an aggregated tune list of the tunes played most often
by the friends, weighed by the number of plays of each tune. For this
computation we would need the counts, of course, so we would have each
friend's machine transmit pairs of tunes and their counts, pruned to the top
ten or some such number, rather than just a tune list; in other words, another
multiset. Then we could produce an aggregated tune list by doing a big multiset
sum or union of all the multisets coming from the friends. We might or might
not find such a list useful, because it would be heavily weighted toward the
tastes of the friends who spent most time listening to tunes, but it might be
an option worth considering.

Then the user might want to play the tunes on any of these aggregated lists,
or to search for tunes like them. Code to determine whether a given tune is
in the user's tune library would simply contain the Boolean expression
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t in myTunes

Perhaps the user would like to see tunes in the tune library that have the same
artist as a given tune. We could get the set of such tunes with a comprehension:

{ t for t in myTunes
if t.artist() == tune.artist() }

Notice that this is a relational selection operation (Section 10.5). You can
probably think of similar computations that the program might do.

Now let's review the mathematical structures that this case study has used:
multisets, certainly, but also sets and set comprehensions; n-tuples; sequences
of various kinds; mappings such as artist, title, and topN; and relations. In
each case, notice how the mathematical structure was a natural choice for the
job to be done.

12.2. Biological surveys
Our next case study is a program to record data from biological surveys.

For our purposes, a biological survey is a count of organisms of different kinds
in a particular place or at a particular time or both. One good example is the
Christmas Bird Count in North America. Other examples might be a count
of grasses and wildflowers in a meadow, or a count of fish passing a particular
dam over some period of time.

Usually a participant in a biological survey records different kinds of organisms
observed and how many of each, and our program will accumulate these
counts. Sometimes, as perhaps in the case of grass plants in a meadow, a
participant may not count individuals, but our program will still be able to
count the number of participants that observed a particular kind of plant. Or
the meadow might be divided into grid squares, and the program would count
the number of squares in which an organism was observed. In any case, the
program will accumulate counts, like the tune-list program in Section 12.1
does. But this time we won't represent the data explicitly as a multiset — that
is, as a set of key-and-count pairs — because another structure for the data
is more important, as we will see.
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In biology, a “kind” of organism is called a “taxon” (plural “taxa”). A taxon
is identified by a scientific name, usually derived from Latin, and it often has
a common name in English or whatever the local modern language may be.
Taxa are arranged into levels called “ranks”, from more general to more
specific. For example, for birds the major ranks are as follows (scientific names
are shown in italics):

• Class. Example: Aves (birds).

• Order. Example: Strigiformes (owls).

• Family. Example: Strigidae (typical owls, not barn owls).

• Genus. Example: Bubo (horned owls).

• Species. Example: Bubo virginianus (Great Horned Owl).

Often, as in the case of birds, there are also intermediate ranks such as
superorders and subfamilies. Our program will not have a particular set of
ranks built in, but will use whatever ranks are in the data that we are given.

Each taxon except those at the lowest rank, then, comprises one or more taxa
from the next rank down. The class Aves, for example, comprises the
Strigiformes, the Gaviiformes (loons), the Sphenisciformes (penguins), and
two dozen or so more orders.

Our program will need to represent this hierarchical structure of taxa, because
a survey participant doesn't always identify a specimen down to the species
rank (“It was a hawk, but I couldn't tell what kind”). In some surveys (of
insects, for example), identification of many specimens down to the species
level is probably too hard for many survey participants, and we would expect
that most of the counts would be of taxa above the species rank. In any case,
the program must be prepared to keep counts of taxa at any rank.

Now let's sketch the design of the program. The central structure is a Taxon

class having the following attributes:

• A scientific name, scientific.
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• A common name (optional), common.

• A rank, rank.

• A count, count.

• The taxon at the next rank up which contains the current taxon, super. It
may be None, which happens when the program doesn't keep data for the
taxon that would be at the next rank up. This would be the case for Aves
in a survey of birds, for example. In any case, no taxon is contained in more
than one higher-rank taxon.

• A set of subordinate taxa at the next rank down, sub. We assume that for
our purposes the ordering is not important.

A Taxon with its sub set is a recursively-defined object, like the ancestry trees
of Section 11.6, and so is the root of a tree. We don't require that all the Taxon
objects be contained in one big tree with a single root; for example, in the
survey of the meadow, there may be one tree containing all the grasses and
another containing all the wildflowers. But each taxon is the root of some tree
or subtree.

With the super attribute, the Taxon objects form a more complex recursively-
defined structure. Recall from Section 11.6 that we can picture a tree as a
directed graph; in a recursively-defined tree, an edge represents a binding or
pointer from an object to another object which is an attribute of the first.

220

Biological surveys



The super attribute adds edges in the opposite direction. Now we can think
of the whole structure as a directed graph that is not a tree, but perhaps it is
more useful to think of it as an undirected tree. The sub edges and super edges
are paired, and each pair is like a single undirected edge that you can use to
go in either direction.

We get the structure of the taxa from a data file, in CSV form as usual. Each
line is a tuple defining a Taxon object and has the following fields:

• A scientific name, defining the scientific attribute.

• A common name, possibly empty, defining common.

• A rank, defining rank.

• The scientific name of the taxon at the next higher rank of which this taxon
is a part, possibly empty, defining super.

The file line does not need to define the sub attribute, because it can be derived
from the super attributes of the other Taxon objects.

For example, the line for Bubo might look like this:

Bubo,horned owl,genus,Strigidae

The taxa file is ordered by rank, highest first, so we can assume that the line
for Strigidae (for example) comes before the line for Bubo. Other than this
constraint, the lines of the file are unordered. But since the lines are not
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completely unordered, the file does not quite represent a relation in the
mathematical sense. (It happens to be an example of another kind of
mathematical structure called a “partially ordered set”, which we haven't
discussed in this book.)

The constructor of the Taxon class in the code (let's be careful not to confuse
Python classes with biological classes!) is called with the fields of a file line as
arguments, and the _ _init_ _ method fills in the scientific, common, and
rank attributes, and initializes count to zero. If the super parameter is not
Null, _ _init_ _ must also find the Taxon object with that name, set self.super
to that object, and insert the current object into the sub set of that object. But
how do we find the object?

Let's keep a dictionary taxon that maps scientific names to Taxon objects; the
_ _init_ _ method inserts an entry into it for the newly-created Taxon object.
We keep a similar dictionary taxonByCommon that maps common names to
Taxon objects; we'll see a use for it later.

Because of the ordering of the taxa file, when _ _init_ _ is called the Taxon

object for super already exists and taxon already contains the corresponding
entry. (Throughout this case study, we won't show code that would deal with
errors in the data, such as lines in the taxa file being in the wrong order or
missing.) For the current Taxon object, we initialize the sub attribute to the
empty set; it will be filled in as later lines of the taxa file are processed.

So here's what we have so far:
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taxon = {}
taxonByCommon = {}

class Taxon:

def _ _init_ _(self, scientific, common, rank, super):
self.scientific = scientific
self.common = common
self.rank = rank
self.count = 0
self.sub = set()

if super != "":
superObject = taxon[super]
self.super = superObject
superObject.sub.add(self)

else:
self.super = None

taxon[scientific] = self
if common != "":

taxonByCommon[common] = self

We give the Taxon class an obvious method to add a number to its count when
a survey participant reports some data:

def add(self, n):
self.count += n

So when a survey participant reports a count of some taxon, we use taxon or
taxonByCommon (depending on which kind of name the participant has given
us) to find the corresponding Taxon object, and apply add to that.

Now we come to the method that all this other structure and code is designed
to support. The method computes the total count observed for some taxon,
including the count stored for the taxon itself and the counts of all subordinate
taxa all the way down the hierarchy. The computation, not surprisingly, is
recursive. We add the count attribute of the taxon to the sum of the totals of
all the elements of sub, and those totals are computed recursively in the same
way. It's all very simple:

def total(self):
return self.count + \

sum((t.total() for t in self.sub))
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Notice that this recursion is not explicitly defined by cases. The basis case of
the recursion is reached at the lowest level of the taxon hierarchy, when
self.sub is empty and so there are no recursive calls.

In the method, sum is a function that returns the sum of a sequence of numbers.
Here is one possible definition of it, similar to the definition in Section 6.4
(where we also defined reduce):

def sum(seq):
return reduce((lambda x,y: x+y), seq, 0)

Now we can produce a report of the counts of a given taxon and all its
subordinate taxa, all the way down the hierarchy. For example, after a short
time into a survey of birds, a report for the order Strigiformes might look like
this:

8 Strigiformes (owl)
7 Strigidae (typical owl)
2 Asio (eared owl)
1 Asio otus (Long-eared Owl)
1 Asio flammeus (Short-eared Owl)

0 Athene ()
0 Athene cunicularia (Burrowing Owl)

5 Bubo (horned owl)
5 Bubo virginianus (Great Horned Owl)

1 Tytonidae (barn owl)
1 Tyto (barn owl)
1 Tyto Alba (Common Barn Owl)

Here's a recursive Taxon method to produce such a report; the method produces
a line for a taxon and then recursively produces a report for each subordinate
taxon. Notice how the parameter indent is used to cause the lines for taxa at
each lower level of rank to be indented two spaces further. Again, the recursion
terminates when self.sub is empty.

def report(self, indent):
print(indent + self.total() \

+ " " + self.scientific
+ " (" + self.common + "))

for sub in self.sub:
sub.report(indent + " ")

224

Biological surveys



Now notice that once the program has read the whole taxa file, values(taxon)
is the set of all the Taxon objects for all the taxa that the program has data
about (see Section 9.2). It is actually a stream, but in no particular order, so
we can think of it as a set. We can iterate over it, filter it, perform a
computation on each element, materialize it as a set, and so on.

Here's one possible use for values(taxon). In the taxa file for a survey, perhaps
the data defines one big tree with a single root, as it might in a bird survey
(the root would be the Taxon object for Aves). But perhaps it doesn't. In that
case, it defines a set of trees (not surprisingly, the mathematical name for such
a structure is “forest”).

We can get the set of roots of all these trees with a simple comprehension:

allTrees = { order in values(taxon)
if order.super == None }

And then we can produce a comprehensive report of all the taxa counted,
organized into the trees to which they belong:

for t in allTrees:
t.report("")

As with the tune-list program in the previous section, you can probably think
of other useful computations that we could add to the program.

Now suppose you were hired to write a program like this one. You complete
the program using the design ideas above and submit it for approval. To your
surprise, your boss asks for changes: there are a couple of additional
requirements.

First, it seems that the taxa subordinate to a higher-rank taxon really do have
an official ordering, called “taxonomic sequence”. The output produced by
the report method, as the Taxon class is currently defined, would not be
acceptable to a biologist; the lines need to be in taxonomic sequence.

Second, some taxa have more than one common name. For one thing, names
of taxa change over time, and some survey participants might not know the
most recent name for a taxon, or might be using old field guides containing
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some old names. For another, a survey may want to treat two or more common
names as equivalent for counting purposes, such as “Snow Goose” and “Blue
Goose” (they are the same species, but the Blue Goose is a “color morph” of
the Snow Goose).

The boss says, “Sorry that I didn't think of these details before, but you'll
need to revise the program.”

Fortunately the changes are very simple. To meet the first new requirement,
we use a list instead of a set for the container for subordinate taxa in a Taxon

object. We change only two lines in the constructor. Here they are:

self.sub = set()
and

superObject.sub.add(self)

We change those lines to these:

self.sub = []
and

superObject.sub.append(self)

Then we simply require that lines in the taxa file be in taxonomic sequence.
Then the Taxon objects are created in taxonomic sequence, and the objects are
appended to the appropriate sub lists in taxonomic sequence.

Now, for example, the report method produces its output lines in taxonomic
sequence as well. The for-statement in the method's body does not need to be
changed at all, but now it iterates over a list rather than a set, and the list is
in taxonomic sequence.

To meet the second new requirement, we use another data file that maps any
additional common names to scientific names; it will be a CSV file as usual,
and let's assume it is named synonyms. We will take each line of the file, convert
it to a tuple using the setOfTuples function from Section 8.4, look up the
scientific name in taxon to find the corresponding Taxon object, and add an
entry to taxonByCommon for the new common name. The code is very simple
and the iteration has a familiar look:
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for (common, scientific) in streamOfTuples("synonyms"):
t = taxon[scientific]
taxonByCommon[common] = t

Only the official common name is stored in the Taxon object, but since all
synonymous common names map to the same Taxon object in the
taxonByCommon dictionary, they all contribute to the count of a single taxon.
The boss is satisfied with this solution.

In this case study the central mathematical structure in the design is the
structure of the taxa, which at its heart is a tree or (in the general case) a set
of trees. The structure is made of recursively-defined objects. With the super

attributes, the taxa structure is a directed graph, but we can also view it as an
undirected tree. Mappings are also important in the design, especially taxon

and taxonByCommon, the recursively-defined mapping total, and the file
synonyms. The program also uses sets, as well as tuples and sequences of tuples.

12.3. Note cards for writers
Our last case study will be a program to help writers manage fragments of
texts, such as outlines, notes, pieces of drafts and finished work, and citations.
The program is designed for students writing papers and theses, and for
academic and professional writers writing articles and perhaps even books.

The program will be based on the metaphor of a note card, of the kind that
students and writers have traditionally used in their research. The program
will show “cards” as windows on a computer screen:
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We join the software development project near its beginning. The organization
developing the program has not completely decided on exactly what features
the program will have or how the program will work, but has ideas. Here are
some of them.

A user of the program will be able to create links among note cards, much
like links among web pages. In fact, links will be able to point to several other
kinds of things, such as:

• Web pages.

• Digital documents, in formats like PDF and Postscript, and specific places
in documents.

• Entries in bibliographic databases.

A user will be able to annotate a note card with one or more keywords, and
also with one or more key-value pairs. For example, in the illustration below,
the note card has two keywords and one key-value pair. In the latter, the value
is a link, perhaps to an entry in a bibliographic database.

A user will be able to search for cards with particular keywords, or cards with
particular values associated with particular keys. The program will also let
the user perform other kinds of searches, such as for cards containing particular
text.

Some keywords will be used to categorize cards as to their role, such as
“outline” or “synopsis” or “draft”. Certain operations will most commonly
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be done on cards having the same role; some such operations are splitting one
card into two or more shorter cards, combining two or more cards into one
longer card, and defining an ordering among cards.

As a user works on a document, ordering fragments of text and combining
them will become more and more important. The ultimate goal, after all, is
to create a document as a single long sequence of text, probably from the
contents of note cards having roles like “draft” or “final”. But as the work is
in progress, the user might want to view the current state of all or part of the
document by looking at a current outline or synopsis or draft taken from some
or all of the note cards.

For example, consider the cards having the role “outline”. Suppose that one
note card represents the top-level of an outline of a document, and suppose
that the card contains links to other cards representing more detailed outlines
of parts of the document. Those cards might contain links to other cards of
the same kind, and so on. Then all these cards and links might form a tree:

A user might like to form one overall outline from this tree. Such an operation
would produce an indented outline like the bird-survey report of Section 12.2,
and could easily be programmed recursively, like the report method in that
section.
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But what if the links form a directed graph that is not a tree — that is, if there
are note cards pointed to by more than one link?

What should the program do with cards like the one in the lower right? Should
the program include its contents the first time it finds the card as it traverses
the directed graph, or after it has processed all cards pointing to it? Or should
the program include its contents more than once? And what should the
program do if the user has somehow created a cycle in the directed graph?
These are some of the design issues that the developers of the program are
still debating.

In some situations the best solution may be to leave the ordering task to the
user. For example, the program might display cards as if they were spread out
on a table top, and let the user move them around using the program's
graphical user interface.
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This interaction may also be what the program does when the user performs
a search: the program may take the set of cards satisfying the search criterion
and display them as if on a table top, and let the user order them or perform
other operations on them.

The developers of the program clearly have much more work to do and many
more decisions to make, but let's take the description of the program as it
stands and describe it in terms of discrete-mathematical structures.

We can describe a note card as a 4-tuple having the following components:

• A title, which is a sequence of characters.

• A body, which is text that may contain links.

• A set of keywords, possibly empty. Each keyword is a sequence of characters.

• A relation (the key-value pairs), also possibly empty. Each key is a sequence
of characters, and each value is text that may contain links.

The designers of the program haven't yet decided how “text that may contain
links” will be represented. One reasonable choice would be to represent a link
as a particular kind of sequence of characters, much as in HTML. In HTML,
a link to a location named “next” (say) is represented by a sequence of
characters called a “tag”, having a form like “<a href="next">Next</a>”. If
some such representation is used in a note card for a link, then “text that may
contain links” is just a sequence of characters much like any other.

Another reasonable choice might be to represent the links explicitly as different
kinds of things, perhaps as Python objects. Then the representation of “text
which may contain links” could be a sequence of elements from the union of
two sets: the set of all strings and the set of all link objects. In either case,
though, the representation is a sequence of some kind.

The collection of note cards is a set. The links among note cards imposes
another structure on the set: a directed graph, in which the vertices are the
note cards and the edges are the links. Some parts of the graph, such as the
parts defining outlines, may be trees. Considering also the links to external
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objects, such as web pages, all the links define a larger directed graph. The
user may convert the contents of these graphs and trees, or parts of them, into
sequences of text in various ways.

The result of a search is a set of note cards, a subset of the set of all note cards.
The user may convert any of these subsets into a sequence.

To summarize, then: just in the description of the program that we have so
far, we have tuples, sequences, sets, relations, trees, and directed graphs. Thus,
like the other case studies, this one uses most of the kinds of mathematical
structures that we have presented in this book. Certainly the programmers in
the development organization will be able to use what they know about the
mathematical structures to guide their thinking as development proceeds.

Exercises
1. Instead of representing a tune as a tuple in the program of Section 12.1,

we might define a class of Tune objects and represent each tune as an
instance of that class. What would be some advantages and disadvantages
of doing so?

2. Or we might represent a tune as a dictionary mapping names of attributes
to the corresponding attribute values. What would be some advantages
and disadvantages of this representation?

3. Choose one of the programs presented in this chapter. Propose a new feature
to add to the program, a feature that would use some kind of mathematical
structure that the program doesn't already use. Be sure that the mathematical
structure is appropriate for job it needs to do.
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Afterword
I hope that you now appreciate some of the ways that the concepts and
structures of discrete mathematics can be useful in programming.

We have only begun to explore the structures of discrete mathematics that
find applications in programming. Among these are many specialized kinds
of trees and graphs, special kinds of relations such as partial orders, and other
variations on the structures that we have seen.

The Boolean values “true” and “false” are discrete-mathematical objects too.
Logic is a central area in discrete mathematics, and of course computing
depends on logic in any number of ways.

Sets of strings defined in various ways are called “formal languages” by
computer scientists, who have studied them extensively. The technology in
programming-language interpreters and compilers is based on the results, as
well as on results from the study of state machines, trees, and graphs.

Another important area of discrete mathematics is called “combinatorics”;
simple examples of results from combinatorics are numbers of combinations
(Example 7.1) and heights of balanced trees (Section 6.6). Combinatorics is
used in algorithm analysis, to predict running time of algorithms or to compare
different algorithms for efficiency.

If you are a computer science student, you will see topics like these throughout
your studies. You may take classes specifically called “discrete mathematics”,
or classes with names like “combinatorics”, “formal languages and automata”,
or “analysis of algorithms”. And your classes in such areas as operating
systems, computer networks, data bases, and compiler writing will be full of
discrete mathematics.

Whether or not you are a CS student or a computer scientist, you can use
discrete-mathematical thinking routinely in your day-to-day programming
work, and I encourage you to do so. Very often, your job will be easier and
your solutions will be cleaner, and you may even enjoy your work more.
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Solutions to selected exercises
Chapter 2, An overview of Python

2. On my computer, the Python interpreter runs for about two and a half
minutes and then displays this, among other things:

MemoryError

This is an indication that the interpreter has used all the main memory available
to it and still wasn't able to complete the computation.

4. For a positive integer n, log10n is an approximation for the number of
decimal digits it would take to write out n, just from the definition of a
logarithm. It's a good approximation if n is large.

Now log10n = (log2n)/(log210). If n = 22100
, log2n = 2100, and log210 = 3.32

approximately.

So the number of digits it would take to write out n = 22100
is 2100/3.32

approximately. By using the Python interpreter or some other calculator
program on our computer, we find that 2100 is

1,267,650,600,228,229,401,496,703,205,376

So that number divided by 3.32 is approximately the number of digits you
would need. Now do you believe that 22100

is a number too big for your
computer to work with?

5. Yes; no. Try some examples. We'll look at such properties of sequences
in more detail in Section 6.1.

6. Combining ideas from the first and second script in this chapter, we can
get something like this:
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file = open("names")
for line in file:

firstname, lastname = line.split(" ")
if firstname == "John":

print(line)

You might not have thought of this solution if you didn't know (or guess)
that " " can be used in Python to represent a blank space, but in fact it can.
A space character — what you get when you press the space bar on your
keyboard — is a character just as a letter or digit or punctuation mark is.

Chapter 3, Python programs
1. Here is one solution:

file = open("data")
for line in file:

n = int(line)
print "#" * n + " " + str(n)

2. Here is one solution:

file = open("data")
for line in file:

n = int(line)
if n > 20:

barLength = 20
else:

barLength = n
print "#" * barLength + " " + str(n)

3. Here is one solution:

file = open("data")
for line in file:

n = int(line)
if n > 20:

print "#########/ /######## " + str(n)
else:

print "#" * barLength + " " + str(n)
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Chapter 6, Sequences
3. No. Exponentiation is not associative: for example, 2**(2**3) = 28= 256
but (2**2)**3 = 43 = 64. Furthermore, there is no identity for the ** operator.
1 works as an identity on the right, since n ** 1 = n for any value of n, but
not on the left, since 1 ** n does not equal n for most values of n.

6. Here are two possible solutions:

def filter(test, sequence):
result = ( )
for a in sequence:

if test(a):
result += ( a, )

return result

def filter(test, sequence):
result = [ a for a in sequence if test(a) ]
return tuple(result)

Which do you think is better? Why?

10. That version of reduceRight will pass f its arguments in reversed order.
It gives the correct result only if f is commutative.

Chapter 7, Streams
2. Here is one solution:

def prefix(n, stream):
i = 0
for a in stream:

if i >= n:
return

else:
yield a
i += 1

6. Not in the obvious way, because averaging is not associative. For
example, suppose # is a binary averaging operator, so that a # b is defined to
be equal to (a + b)/2; then (a # b) # c ≠ a # (b # c), as you can see by trying
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some examples. In general, an average of averages is not equal to a single
average of all the values.

As a further exercise, discuss how you might get around this problem in the
case of the weather stations. Assume that you want to minimize the quantity
of data that you transmit among computers, so that transmitting all the data
to the central site and averaging the data there is not a solution.

Chapter 8, Sets
1. You want to apply a “big intersection” operation to the set of sets. Use
the version of reduce that you wrote for Exercise 9 of Chapter 6. Did you
write that function using a for-statement to iterate over the sequence? If so,
you should be able to use the function on a set of operands just as well as on
a sequence of operands — do you see why?

Chapter 9, Mappings
1. Pairs of values x and y of types for which the binary operator * is
overloaded.

2. When the domains of c and d have no elements in common; that is, when
dom c ∩ dom d = ∅.

Chapter 10, Relations
2. We can define the set of vertices of the graph as the set of all a and b of
all pairs (a, b) in the relation. However, we could add any other elements at
all to the set; they will represent isolated vertices, but the graph will still have
the given relation as its adjacency relation. The usual and sensible definition
omits isolated vertices.

5. No, because the definition of a monoid would require that any two paths
in the graph can be concatenated, whether they share an endpoint or not. But
the set of all paths in a given directed graph, with concatenation, does form
another kind of mathematical structure called a “category”.
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6. We give only the solution for σP(X) (the easy part). Let Y be σP(X), and
choose the same ordering of attributes in its representation as for X. Then AY
= AX, colY = colX, and RY = { x ∈ RX │ P(x) }.

Chapter 11, Objects
5. a. Just take one of the versions of ancestorNames in Section 11.6, rename
the method to ancestors, and replace self.name with self everywhere.

b. Use a set operation! If the person is p, the set you want is just

ancestors(p) - { p }

c. Use a set comprehension, of course. It will take the form

{ ... for a in ancestors(p) }

Surely you can fill in the rest.
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