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We can trace the history of algebra over the entire 4000 years of recorded mathematics, 
even if algebra as a subject is noticeably younger.  However, the advent of abstract algebra is 
fairly recent.  Students often feel that this subject has no apparent connection to the familiar 
high school algebra.  However, much of the historical motivation for abstract algebra is a 
natural continuation of the questions leading to the development of high school algebra.  High 
school algebra topics were fully developed by 1750, after which algebra went in new and very 
profound directions.  This essay will present some of the historical background of high school 
algebra and abstract algebra. 

Algebra before 1750

The oldest texts we have, clay tablets from Babylonia (in present day Iraq 1950 BCE) 
and papyrus scrolls from Egypt (1650 BCE), already have word problems and recipes for their 
solutions.  We would write many of these problems using first degree and second degree 
equations and systems of equations.  Here are two examples, freely paraphrased with modern 
base 10 notation for ease.  Note that there is no symbolic notation, no justification and no 
general rules.  The first example uses a very early “guess and adjust” way to solve first degree 
equations called “the method of false position”.  Egyptians multiplied by doubling and divided 
by halving, which explains some later steps in the solution.  I urge you to solve these problems 
using modern high school algebra before reading the provided solutions.  Try to describe what 
characteristics you think algebra has and how many of those characteristics these examples 
have.

Ex. 1 (Egyptian)  A quantity and one fifth of it added together become 21. What is the 
quantity?  Provided solution:  Assume the quantity were 5.  1/5 of 5 is 1.  Together we get 6. 
How many times 6 gives 21?   Twice 6 is 12, half of 6 is 3.  6 plus 12 plus 3 is 21.  Then 5 plus 
twice 5 plus half of 5 gives 17.5, which is the desired quantity.  See: 1/5 of 17.5 is 3.5 and 17.5 
plus 3.5 is 21.  [Katz, 28]

Ex. 2 (Babylonian)  The area of a rectangle is 60 and one side exceeds the other by 7. 
What are the sides?  Provided solution: Break in half the 7 to get 3.5. 3.5 times 3.5 is 12.25. 
Add the area 60 to 12.25 to get 72.25.  Its square root is 8.5.  Add 8.5 plus 3.5 to get 12 and 
take 3.5 from 8.5 to get 5.  The sides are 12 and 5. [Katz, 102]

Much later, 600 BCE, the Babylonians invented a notation for zero as a place holder 
(but not as a separate number).  

The Greeks transformed algebraic ideas into the language of geometry and even more 
importantly provided general proofs of results.  Euclid, who lived around 300 BCE, included 
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fairly easy algebraic properties like the following in his geometry book:
    Proposition II-4.  For a line segment cut at random, the square on the whole equals 
    the squares on the segments and twice the rectangle contained by the segments.  
(In algebraic language, this becomes (A+B)2 = A2 + 2AB + B2, where (A+B)2 is “the square on 
the whole” and  AB is “the rectangle contained by the segments” A and B.)  More profoundly, 
Euclid generalized problems like Example 2 above.  For instance, Euclid’s Proposition 28 from 
Book VI showed how to construct a rectangle with a given side (length plus width) so that if 
you take off a square (whose side is the width) you get a given area.  (Here is the 
corresponding algebra problem: For length x and width y, if x+y = K and xy = M, find x and 
y.)   Euclid also gave the conditions needed for a solution to be possible and a proof of this 
version of the quadratic formula.

Around the year 250 the Greek mathematician Diophantus used notations as algebraic 
shorthand, but not as symbols that can be manipulated algebraically.  Around 300, the Hindus 
used a symbol for zero in its full numerical meaning.

The Arabic mathematician Al-Khwarizmi (825) gets credit for thinking of algebra as an 
actual subject: He studied and solved representative examples of types of “equations,” but 
didn’t use any symbols.  In modern terms, he solved as separate types problems of the forms 
ax2 = c, ax2 = bx, ax2 = bx + c, ax2 + bx = c and ax2 + c = bx, where a, b, and c are all positive 
numbers.  (Negative numbers take a while to dawn on mathematicians.  Incidentally, the title of 
his very famous book included the Arabic word “al jabr,” meaning completion, or adding the 
same thing to each side, from which comes our word “algebra.”  Al-Khwarizmi’s name was 
corrupted into our word “algorirthm,” which is what his solutions provided.)  Omar Khayyam 
(around 1100) studied the many varieties of cubic equations, such as ax3 + bx2 = cx + d, giving 
geometric solutions using conics, as the Greeks had considered.

By 1545 several Italian mathematicians, culminating in Hieronimo Cardano, had 
amazingly found the complicated algebraic formulas to solve all cubic and fourth degree 
equations, still without symbols or using negative numbers as actual numbers.  These formulas 
involved cube roots and fourth roots, as well as square roots.  But sometimes square roots of 
negative numbers showed up in the calculations, even for real positive solutions.  No one 
pretended then to believe these “imaginary” numbers meant anything, but geometrical 
justifications made them confident that their methods worked.

Raffael Bombelli in 1572 reasoned that a negative number times a negative number had 
to be a positive number because multiplication distributes over addition.  He and others started 
investigating complex numbers as an algebraic system based on algebraic properties.  In 1589 
François Viète was the first to use symbols as things to manipulate algebraically and 
symbolically.  The equal sign appears about this time.



In 1637 René Descartes’ famous book, Geometry, united algebra and geometry and 
radically changed math.  (Think of Cartesian coordinates and y = mx + b and y = ax2 + bx + c 
as equations for lines and parabolas.)  He saw the power of setting an expression equal to 0 to 
solve it and to investigate the number of possible positive roots.  This innovation made him 
deal with negative roots, which he distinguished from “true roots.”  For example, (x – 2)(x + 3) 
= 0 has a “true root” of 2 and a “negative root” of 3.

While calculus took off full blast from Descartes’ work, algebra developed more 
slowly.  Around 1750 Leonhard Euler’s textbooks set the standard for algebra notation.

It is worth considering what characterizes high school algebra.  Certainly, solving 
equations is an important part of it.  But the ability to manipulate formal symbols is vital. 
When we manipulate x and y, we follow formal rules.  Of course, early on students think x and 
y are just place holders for not yet known numbers.  But later students add, multiply and factor 
polynomials without any reference to what the abstract letters mean.  All that matters are the 
formal properties.  Formal properties lead naturally to the need for derivations and proofs.  We 
owe the Greeks the realization that proofs are an essential part of mathematics, justifying the 
manipulations that others simply use.

Algebra since 1750

Finding roots of algebraic equations remained an important problem, but further 
progress required far more theory.  Carl Friedrich Gauss for his Ph.D. in 1799 (at age 22) 
proved the Fundamental Theorem of Algebra: Every nth degree polynomial in the complex 
numbers can theoretically be factored completely in the complexes and so has exactly n 
complex roots, counting repeats.  However, his proof gives no clue how to find actual roots. 
Various people tried unsuccessfully to find an explicit formula to solve fifth degree equations, 
hoping to extend the success of the third and fourth degree formulas.  Joseph Lagrange in 1770 
analyzed roots of equations using permutations of the roots.  These permutations (one-to-one 
onto functions of a set) form the prototype of a group in abstract algebra.  Niels Abel in 1824 
(at age 22) used this idea to prove that there can be no algebraic formula that gives the roots for 
all fifth degree equations.  It is worth pointing out that proving something can’t be done 
requires far more insight than finding a formula that happens to work.  In 1832 Evariste Galois 
(just before he died at age 21) generalized this enormously as Galois theory, a major topic in a 
second semester abstract algebra course.  Galois was able to determine which fifth and higher 
degree equations could be factored using roots and other algebraic operations and which 
couldn’t be factored that way.  To prove his results, Galois developed many key abstract 
algebra ideas—subgroups, normal subgroups, fields and more.

Mathematicians have posed and solved systems of two or three first degree equations for 
thousands of years.  Many pieces of what we call linear algebra appear before 1750, but not in 
a general setting or fitting together: the Chinese (200) invented matrices to solve systems, 



separately Colin Maclaurin (1729) invented determinants to solve systems, and Euler (1748) 
starts developing the idea of eigenvalues for linear systems.  After 1830 these threads get 
woven together into the general subject we call linear algebra, especially by Arthur Cayley. 
Cayley considered matrices as functions.  He also used matrices and vectors as algebraic 
objects, working with equations whose variables and constants can be vectors or matrices.  He 
stated and made use of formal algebraic properties of these objects.  He gave the abstract 
definition of a group (1849), independent of the objects in it, starting the emphasis in math on 
abstract systems.

In 1872 Felix Klein convinced geometers of the power of transformations (permutations), such 
as rotations and reflections.  A geometry or a geometrical structure has its own set of 
transformations, which always forms a group.  Thus groups quickly became essential in 
investigating geometry.  Others used this approach in analysis and topology.  In 1891 
Vyatseglav Fedorov, a Russian chemist and mathematician, used groups to classify all possible 
chemical crystals before x-rays could reveal how atoms were arranged.  In the 1920s physicists 
realized that groups (and linear algebra) were essential to study quantum mechanics.  Groups 
have such widespread theoretical and practical importance that mathematicians realize that all 
mathematics majors need to understand a fair amount about them.  Many other algebra topics 
appear in other areas of mathematics, as well as in physics, computer science and other 
disciplines.

After 1850 algebraists started focusing on abstract systems satisfying formal properties, 
although initially as a way to systematize already known examples.  Bit by bit they realized 
that formal proofs about abstract systems are often clearer, simpler and more general than ones 
about specific systems, even when the system is familiar.  Emmy Noether (1921) deserves 
credit for reformulating algebra as the study of abstract structure, which will be our approach. 
Arbitrary systems, their properties, interrelations and classification are now major concerns of 
algebra.  This abstract approach has led to new and deeper insights about algebra and all of 
mathematics.  Algebra is the first place in the undergraduate curriculum that can showcase the 
power of the formal abstract approach.  Understanding the power of abstraction and general 
proofs is an additional reason for requiring all mathematics students to study this beautiful 
subject.
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