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Abstract

Mittal and Rhoades (1999-2001), Mittal et al. (2005) Mittal, and Rhoades and Mishra (2006) have initiated the studies of error estimates
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through trigonometric-Fourier approximation (tfa) for the situations in which the summability matrix T does not have monotone rows. In this paper, we continue the work in the direction. Here we extend two theorems of Leindler [L. Leindler, Trigonometric approximation in 
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-norm, J. Math. Anal. Appl. 302 (2005) 129-136], where he has weakened the conditions on 
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given by Chandra [P. Chandra, Trigonometric approximation of functions in 
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-norm, J. Math. Anal. Appl. 275 (2002) 13-26], to more general classes of triangular matrix methods. Our Theorem also generalizes Theorem 4 partially of Mittal et al. [M.L. Mittal, et al., Using infinite matrices to approximate functions of class 
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 using trigonometric polynomials, J. Math. Anal. Appl. 326 (2007) 667-676] by dropping the monotonicity on the elements of matrix rows which in turn generalize the results of Quade [E. S. Quade, Trigonometric approximation in the mean, Duke Math. J. 3 (1937) 529-542].
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1. Introduction
Let 
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denote the nth term of the (C, 1) transform of the partial sums of the Fourier series of a 
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- periodic function (signal) f. In 1937, Quade [15] has proved that if 
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 Chandra[2] has extended the work of Quade[15] and proved three theorems. In [2] among others the following theorems, where 
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 denote the nth terms of the Nörlund and weighted mean transforms of the sequences of partial sums, respectively were proved. 
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Theorem B[2]. Let
[image: image30.wmf]fLip(,1),0<1,

Îaa<

and let
[image: image31.wmf]{

}

n

p

be positive and non-decreasing  with (1). Then 

                                                 
[image: image32.wmf]n

 1

fR(f)O(n).

-a

-=

                                      (3)

NOTE: 

1. Some of the estimates, as mentioned by Chandra [2, p.15] himself, are sharper than the results proved by Quade[15], Mohapatra and Russell[14], and by himself  earlier [1] and also new[2, p.253], hence are interesting (in view of Leindler [4, p.130] also).

2. From the point of view of applications, the sharper estimates of infinite matrices, as Gil mentioned [3, p.176], are useful to get bounds for the lattice(occurs in solid state Physics) norms of matrix valued functions, and enable us to investigate perturbations of matrix valued functions and compare them. Few more applications are mentioned in section 2.

3. Here we shall use all the notations of Mittal et al.[11].

A positive sequence c
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Such sequences will be denoted by c
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Leindler [4] extended Theorems A and B of Chandra [2] without monotonicity on
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maintains, then (2) holds.                                     
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For a given signal 
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denote the partial sum, a trigonometric polynomial of degree(or order) n, of the first 
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The Fourier series of signal f is said to be T –summable to s, if 
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Throughout 
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-a linear operator, will denote a lower triangular regular matrix with non-negative entries with row sums 1. Such a matrix T is said to have monotone rows if, for each n, 
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The integral modulus of continuity of f is defined by
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     [x]- the greatest integer contained in x, 

Here, a signal (function) f is approximated by trigonometric polynomials 
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 of order (or degree) n and the degree of approximation 
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in terms of n. This method of approximation is called trigonometric Fourier Approximation.

Recently Mittal et al. [11] have generalized two theorems A and B of Chandra ([2, Theorem 1 and a part of Theorem 2]) to more general classes of triangular matrix methods. They prove:

Theorem E [11].  Let 
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(i) If 
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(ii) If 
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(iii) If 
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then (6) is satisfied.

2. Mittal, Rhoades ([5]-[8]), Mittal et al. [9] and Mittal, Rhoades, Mishra [10] have obtained many results on tfa (these approximations have assumed important  new dimensions due to their wide applications in signal analysis [12], in general and in digital signal processing [13] in particular, in view of the classical Shannon sampling theorem), using summability methods without monotone rows of the matrix T: a digital filter. In this paper, we extend two theorems C and D of Leindler [4, Theorems 1 and 2] to more general classes of triangular matrix methods. Our Theorem1 also generalize partially Theorem E of Mittal et al. [11], respectively by dropping monotonicity on the elements of matrix rows (that is weakening the conditions on the filter, we improve the quality of the filter). We prove:
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hold then (6) is satisfied.
We note that: 

(i). In case of Nörlund 
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(ii). Further, it is easy to examine that the conditions of Theorem 1 claim less than the requirements of Theorem E for
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is also true.

3. Lemmas

          In order to prove our Theorem 1, we require the following lemmas:


Lemma 1 [15]. If 
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Lemma 3 [11]. Let T have monotone rows and satisfy (8). Then, for 
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Note: Since every monotone sequence is also an almost monotone, the proof of Lemma 3 is valid for the almost monotone (i.e. AMDS or AMIS) sequences.

4.  Proof of Theorem 1.
Cases I. If 
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Case III.   If 
[image: image122.wmf]1.

α

1,

p

=

>

 Using Lemma 2, we get

             
[image: image123.wmf]nnnn

ppp

1

nn

p

(f)f(f)s(f)s(f)f

(f)s(f)O(n).(14)

-

t-£t-+-

=t-+


So, it remains to show that 

                                             
[image: image124.wmf]1

nn

p

(f)s(f )O(n).

-

t-=

                               (15)

We may write 


[image: image125.wmf]nnn

nn,kkn,nknkn,kk

k0k0k0

(f)as(f)as(f)Au(f),

--

===

t===

ååå


and thus, as 
[image: image126.wmf]n,0

A1,

=

 we have

              
[image: image127.wmf]nn

n,kn,0

nnkn,kk

k1k1

AA

(f)s(f)ku(f)bku(f).

k

==

-

æö

t-==

ç÷

èø

åå


By Abel’s transformation, we get
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Thus by triangle inequality, we find
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But by direct computations, we have
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Therefore by Lemma 1, we get
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We note that        
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As in case (II) of proof of Theorem E[11, p.672], we write
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Next we claim that
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holds,
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and we will show that (20) is true for 
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Thus (20) holds for 
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Combining (16), (17), (18) and (22) yields (15). Thus, from (15) and (14), we get
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CASE II. If 
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As in case (III), using (20) and taking r:=[n/2] throughout in this case, we have
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Interchanging the order of summation and using (9), we get   

  
[image: image151.wmf]rk

11

1mn,m1

k1m1

rrn

mn,m1mn,m1nmn,nm

m1kmm1mnr1

n

nmn,nm

mr1

n1

n

1

nmn,nmkn,k

m1k0

Bk(k1)ma

1

maaa

k(k1)

m

a

r1

111

ma(nk)aO(1)O(n).(25)

r1r1r1

--

-

==

¥

----

====-+

--

=-

-

-

--

==

º+D

£D=D=D

+

æö

£D

ç÷

-

èø

£D=-D==

---

åå

åååå

å

åå


Now
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Using arguments as in
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and (9), we obtain  
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Again interchanging the order of summation and using (9), we have
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From (25)-(28), we get (23). Thus (14), (17) and Lemma 2 again yield (6).
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CASE V.  If 
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This completes the proof of case (V) and consequently the proof of Theorem 1 is complete.
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