ON INFINITE MATRICES AND (σ, λ) - CONVERGENCE

EKREM SAVAŞ

Istanbul Commerce University Department of mathematics Üsküdar, Istanbul-Turkey

By l_{∞} we denote the Banach space of bounded sequences $x = (x_k)$ normed by $||x|| = \sup_k |x_k|$.

Shaefer [5] defined the σ -convergence as follows: Let σ be a one-to-one mapping from the set of natural numbers into itself. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or a σ -mean provided that

- (i) $\phi(x) \ge 0$ when the sequence $x = (x_k)$ is such that $x_k \ge 0$ for all k,
- (ii) $\phi(e) = 1$ where e = (1, 1, 1, ...), and
- (iii) $\phi(x) = \phi(x_{\sigma(k)})$ for all $x \in l_{\infty}$.

The main object of this paper is to study $V_{\sigma}^{\lambda}(p)$ and $V_{\sigma_0}^{\lambda}(p)$ (the definitions are given below) and characterize certain matrices in $V_{\sigma}^{\lambda}(p)$.

If p_m is real such that $p_m > 0$ and $\sup p_m < \infty$, we define

$$V_{\sigma_0}^{\lambda}(p) = \left\{ x : \lim_{m \to \infty} |t_{mn}(x)|^{p_m} = 0, \text{ uniformly in } n \right\}$$

and

$$V_{\sigma}^{\lambda}(p) = \left\{ x : \lim_{m \to \infty} \left| t_{mn}(x - le) \right|^{p_m} = 0, \text{ for some } l \text{ , uniformly in } n \right\},\$$

where

$$t_{mn}(x) = \frac{1}{\lambda_m} \sum_{i \in I_m} x_{\sigma^i(n)},$$

and $I_m = [m - \lambda_m + 1, m]$. In particular, if $p_m = p > 0 \ \forall m$, we have $V_{\sigma_0}^{\lambda}(p) = V_{\sigma_0}^{\lambda}$ and $V_{\sigma}^{\lambda}(p) = V_{\sigma}^{\lambda}$.

References

- [1] V. Karakaya, θ_{σ} -sumable sequences and some matrix transformations, Tamkang J. Math. 35(4)(2004), 313-320.
- [2] E. Malkowsky and E.Savas, Some Sequence Spaces Defined By a Modulus, Archivum Math.Tom 36(2000),219-228.
- [3] M. Mursaleen, A. M. Jarrah and S. A. Mohiuddine, *Bounded linear operators for some new matrix transformations*, Iran. J. Sci. Technol. Trans. A, Preprint.
- [4] S. Nanda, Infinite matrices and almost convergence, Journal of the Indian Math. Soc. 40(1976), 173-184.
- [5] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36(1972), 104-110.