
On the solvability of an inverse fractional

abstract Cauchy problem

Mahmoud M. El-borai

m−ml−elborai @ yahoo.com

Faculty of Science, Alexandria University, Alexandria, Egypt.

Abstract

This note is devolved to study an inverse Cauchy problem in a Hilbert space H for

fractional abstract differential equations of the form;

dαu(t)

dtα
= A u(t) + f(t) g(t),

with the initial condition u(0) = u0 ∈ H and the overdetermination condition:

(u(t), v) = w(t),

where (.,.) is the inner product in H, f is a real unknown function w is a given real function,

u0, v are given elements in H, g is a given abstract function with values in H, 0 < α ≤ 1,

u is unknown, and A is a linear closed operator defined on a dense subset of H.

It is supposed that A generates a semigroup. An application is given to study an inverse

problem in a suitable Sobolev space for general fractional parabolic partial differential equa-

tions with unknown source functions.
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1. Introduction

Successful utilization of any fractional differential equation as a modeling tool requires

results about existence, uniqueness and regularity properties of the solution under suffi-

ciently general assumptions.

The general form of the equation is known and the details must be determined by reconcil-

ing the model with the observation of the process. In other words an inverse problem must

be solved to find, on the basis of the observation, the coefficients, free term, the right-hand

side, and sometimes, initial and boundary conditions.

Several authors [1-5] studied the unique solvability of inverse problems for various parabolic

equations with unknown source functions under an integral overdetermination condition.

Cannon and Duchateu considered the identification of an unknown state - dependent source

term in the heat equation [6].

In this note, the following general model is considered:

dαu(t)

dtα
= A u(t) + f(t)g(t), (1.1)

u(0) = u0 (1.2)

where u0 is a given element in a real Hilbert space H, g is a given abstract function defined

on an interval J = [0, T ], (T > 0) with values in H, f is an unknown real function, 0 < α ≤ 1

and A is a linear closed operator defined on a dense subset D(A) in H into H:

It is assumed that A generates an analytic semigroup Q(t). This condition implies ‖Q(t)‖ ≤

γ for all t ≥ 0, where ‖.‖2 = (., .) , (., .) is the inner product in H and γ is a positive

constant.
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In section 2, the inverse Cauchy problem is studied under the overdetermination condition:

(u(t), v) = w(t) , (1.3)

where v is a given element in H and w is a given real function defined on J .

We shall suppose that the adjoint operator A∗ of the closed operator A exists and that if

dαφ(t)

dtα
= ψ(t) ,

then

φ(t) = φ(0) +
1

Γ(α)

∫ t

0
(t− s)α−1ψ(s)ds,

where Γ(α) is the gamma function, 0 < α ≤ 1, φ, ψ are abstract functions of t with values

in H and the integral is taken in Bochner‘s sense [7].

In section 3 an application is given to the inverse Cauchy problem for equations of the form

∂αu(x, t)

∂tα
+

∑
|q|≤2m

aq(x)Dqu(x, t) = f(t)g(x, t) , (1.4)

with the initial condition

u(x, 0) = u0(x) , (1.5)

and the integral overdetermination condition

∫
Q
u(x, t)v(x)dx = w(t), (1.6)

where q = (q1, ..., qn) is an n-dimensional multi-index, x ∈ G ⊂ Rn, Rn is the n-dimensional

Euclidean space, G is a bounded region with smooth boundary ∂G,Dq = Dq1
1 ...D

qn
n ,

Dj =
∂

∂xj
, j = 1, ..., n, |q| = q1 + ... qn

and the considered equation is fractional uniformly parabolic. In other words

(−1)m
∑
|q|=2m

aq(x)yq ≥ c|y|2m,
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for all x ∈ G = GU∂G, y ∈ Rn, where |y|2 = y21 + ... + y2n, yq = yq1...y
qn
n and c is a

positive constant.

It is assume that aq ∈ C2m(G), for all |q| ≤ 2m, where Cj(G) is the set of all continuous

real-valued functions defined on G, which have continuous partial derivatives of order less

than or equal to j.

The functions u0, v and w are given. The unknown functions u and f are determined

in a suitable space.

2.Abstract inverse problem

A pair of functions {u, f} is said to be a strictly solution of the inverse problem

(1.1)-(1.3) if

u ∈ D(A),
dαu(t)

dtα
∈ H

for each t ∈ (0, T ], f ∈ C(J) and the relations (1.1)-(1.3) are satisfied. In this case we say

that the inverse problem (1.1)-(1.3) is solvable.

We shall assume the following conditions;

A1: u0, v ∈ D(A), g(t) ∈ D(A) for all t ∈ J ,

A2: |g1(t)| ≥ g0, t ∈ J , where g1(t) = (g(t), v) and g0 is a positive constant,

A3: The abstract functions g and Ag are continuous on J with respect to the norm in H,

A4:
dαw
dtα
∈ C(J).

Let us consider the following equation:

f = h+ Pf , (2.1)

where

h(t) =
1

g1(t)

dαw(t)

dtα

and P is a linear operator defined on C(J) with values:

(Pf)(t) = − 1

g1(t)
(Au(t), v) (2.2)
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We shall prove now the equivalence between the inverse problem (1.1)-(1.3) and (2.1).

Theorem 2.1. Suppose that the conditions (A1 − A4) are satisfied. Then the following

assertions are valid :

(I) If the inverse problem (1.1) is solvable, then so equation (2.1) has a solution f ∈ C(J),

(II) If equation (2.1) has a solution f ∈ C(J) and the compatibility condition

(uo, v) = w(0), (2.3)

holds, then the inverse problem (1.1) - (1.3) is solvable.

Proof. Assume that the inverse problem (1.1) - (1.3) is solvable. Multiplying both sides

of (1.1) by v scalarly in H, we obtain the relation

dα

dtα
(u(t), v) = (Au(t), v) + f(t)g1(t). (2.4)

From (2.2) and (2.4), one gets

f = Pf +
1

g1

dαw

dtα

This means that f solves equation (2.1).

To prove assertion (II), we notice that by the assumption, equation (2.1) has a solution

f ∈ C(J). When inserting this function in (1.1), the resulting problem (1.1), (1.2) can

be treated as a direct problem having a unique solution u. Using previous results [8], this

solution is given by

u(t) =
∫ ∞
0

ζα(θ)Q(tαθ)u0 dθ

+ α
∫ t

0

∫ ∞
0

θ(t− s)α−1ζα(θ)Q((t− s)αθ)f(s)g(s)dθ ds (2.5)

let us prove now that u satisfies the overdetermination condition (1.3). In this case u and

f are known, consequently (2.4) will represent an identity,

f(t) g1(t) =
dαw(t)

dtα
− (Au, v). (2.6)

Subtracting equation (2.4) from (2.6), one gets

dαw(t)

dtα
=

dα

dtα
(u(t), v)).
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applying the fractional integral of order α and taking into account the compatibility con-

dition (2.3), we find out that u satisfies the overdetermination condition (1.3) and that the

pair {u, f} is a strictly solution of the inverse problem (1.1) - (1.3). This completes the

proof of the theorem.

Theorem 2.2. Let the conditions (A1 − A4) and the compatibility condition (2.3) hold,

then there exists a unique strictly solution of the inverse problem (1.1) - (1.3).

Proof. Using (2.1), (2.2) and (2.5), one obtains (formally) the following Volterra integral

equation

f(t) = ψ(t)−
∫ t

0
(t− s)α−1K(t, s)f(s)ds, (2.7)

where

ψ(t) = h(t)− 1

g1(t)

∫ ∞
0

(Q(tαθ)u0, A
∗v)dθ,

K(t, s) =
α

g1(t)

∫ ∞
0

θζα(θ)(Q(t− s)αθ) g(s), A∗v) dθ.

According to conditions A2, A3 and A4, the functions g−11 (t) and h(t) are continuous on J .

We shall prove now that the function ψ is continuous on J. In fact;

|
∫ ∞
0
|ζα(θ)(

∫ t2

t1

d

dt
Q(tαθ)u0 dt , A

∗v) dθ|

= |
∫ ∞
0

ζα(θ)(
∫ t2

t1
αtα−1θQ(tαθ)Au0dt, A

∗v)dθ|

≤ γ‖Au0‖ ‖A∗v‖ (tα2 − tα1 ),

t2 > t1, t1, t2 ∈ J.

We shall prove that equation has a unique solution f ∈ C(J).

Using the method of successive approximations, we set

fn+1(t) = ψ(t)−
∫ t

0
(t− s)α−1K(t1s)fn(s)ds,

f0(t) = 0, for all t ∈ J, n = 1, 2, ...

It is easy to see that

|f2(t)− f1(t)| ≤ M tα,
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where

M =
γ

g0
sup
t
‖g(t)‖ ‖A∗v‖

By induction, one gets

|fn+1(t) − fn(t)| ≤ Mntnα(Γ(α))n

Γ(nα + 1)
(2.8)

It can be proved that all the functions fn+1(t)− fn(t) are continuous on J , (comp. [9-15]).

Using (2.8), we see that the series
∑∞
k=1[fk(t)− fk−1(t)] uniformly converges on J to a

continuous function f(t), which represents the unique solution of (2.7).

According to theorem (2.1) this confirms that the inverse problem (1.1)-(1.3) is solvable.

To prove the unique solution of (2.7). According to theorem (2.1) this confirms that the

inverse problem (1.1)-(1.3) is solvable. to prove the uniqueness of this solution, we assume

to the contrary that there were two different solutions {v1, f1} and {u2, f2} of the inverse

problem (1.1) - (1.3). We claim that in this case f1 6= f2 for all points of J. In fact if

f1 = f2 on J then applying the uniqueness theorem to the corresponding direct problem

(1.1), (1.2), we would have u1 = u2. Since both pairs satisfy identity (2.4), the functions f1

and f2 give two different solutions of equation (2.7). But this contradicts the uniqueness of

solutions to the Volterra integral equation (2.7). This completes the proof of the theorem.

3. Inverse mixed problem

Let Wm(G) be the completion of the space Cm(G) with respect to the norm

‖v‖2m =
∑
|q|≤m

∫
G
|Dqv(x)|2dx. (3.1)

Denote by Wm
0 (G) the completion of the space Cm

0 (G) with respect to the norm (3.1),

(where Cm
0 (G)) is the set of all functions f ∈ Cm(G) with compact supports in G.

Let L2(G) be the space of all square integrable functions on G.

The inverse problem (1.4)-(1.6) can be written in the abstract form (1.1)-(1.3), where A is

the operator defined by Au = u1,
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u1(x, t) = −
∑
|q|≤2m

aq(x)Dqu(x, t) (3.2)

The domain of definition of A is given by

D(A) = W 2m(G) ∩W0(G)

The considered set D(A) is dense in L2(G) and the closed operator A defined by (3.2)

generates a semigroup [16], [17]. The adjoint operator A∗ is given by A∗u = u2, where

u2(x, t) = −
∑
|q|≤2m

(−1)|q|Dq[aq(x)u(x, t)].

Applying theorem (2.1) and (2.2) we can see that the inverse problem (1.4)-(1.6) is uniquely

solvable.
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