Degree of approximation in Besov space

by

* G.Das, Harachand Mohanty and † B.K.Ray

 \ast 177, Dharma Vihar,Khandagiri,Bhubaneswar-751030,Orissa,India

e-mail : gdas100@yahoo.com

G.C.college, Ramchandrapur, Jajpur

† Plot.No-102, Saheed Nagar, Bhubaneswar-751007, Orissa,India e-mail:raykbraja@yahoo.co.in

1. Definition: Modulus of smoothness. Let $A = \mathbb{R}, \mathbb{R}_+, [a, b] \subset \mathbb{R}$ or T (which is usually taken to be \mathbb{R} with identification of points modulo 2π). The k^{th} order modulus of smoothness [4] of a function $f : A \to \mathbb{R}$ is defined by

$$w_k(f,t) = \sup_{0 \le h \le t} \{ \sup\{ |\Delta_h^k f(x)| : x, x + kh \in A \} \}, t \ge 0$$
(1.1)

where

$$\Delta_{h}^{k} f(x) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} f(x+ih), k \in \mathbb{N}$$
(1.2)

For k = 1, w(f, t) is called the modulus of continuity of f. The function w is continuous at t = 0 if and only if f is uniformly continuous on A, that is, $f \in \widetilde{C}(A)$. The k^{th} order modulus of smoothness of $f \in L_p(A), 0 , or$ $of <math>f \in \widetilde{C}(A)$, if $p = \infty$ is defined by

$$w_k(f,t)_p = \sup_{0 < h \le t} \|\Delta_h^k(f,.)\|_p, t \ge 0$$
(1.3)

If $p \ge 1, k = 1$ then $w(f, t)_p = w(f, t)_p$ is a modulus of continuity (or integral modulus of continuity). If $p = \infty, k = 1$ and f is continuous the $w_k(f, t)_p$ reduces to modulus of continuity $w_1(f, t)$ (or w(f, t)).

Lipschitz spaces: If $f \in \widetilde{C}(A)$ and

$$w(f,t) = O(t^{\alpha}), 0 < \alpha \le 1$$
(1.4)

then we write $f \in Lip\alpha$. If w(f,t) = o(t) as $t \to 0+$ (in particular (1.4) holds for $\alpha > 1$) then f reduces to a constant. If $f \in L_p(A), 0 and$

$$w(f,t)_p = O(t^{\alpha}), 0 < \alpha \le 1 \tag{1.5}$$

then we write $f \in Lip(\alpha, p), 0 . The case where <math>\alpha > 1$ is of no-interest as the function reduces to a constant whenever

$$w(f,t)_p = o(t) \text{ as } t \to 0+ \tag{1.6}$$

We note that if $p = \infty$ and $f \in C(A)$ then $Lip(\alpha, p)$ class reduces to $Lip\alpha$ class.

Generalised Lipschitz space: Let $\alpha > 0$ and suppose that $k = [\alpha] + 1$. For $f \in L_p(A), 0 , if$

$$w_k(f,t) = O(t^{\alpha}), t > 0$$
 (1.7)

then we write

$$f \in Lip^*(\alpha, p), \alpha > 0, 0
(1.8)$$

and say that f belongs to generalized Lipschitz space. The seminorm is then

$$|f|_{Lip^*(\alpha, L_p)} = \sup_{t>0} (t^{-\alpha} w_k(f, t)_p).$$

It is known ([4], p.52) that the space $Lip^*(\alpha, L_p)$ contains $Lip(\alpha, L_p)$. For $0 < \alpha < 1$ the spaces coincide, (for $p = \infty$, it is necessary to replace L_{∞} by \widetilde{C} of uniformly continuous functions on A). For $0 < \alpha < 1$ and $p = \infty$ the space $Lip^*(\alpha, L_p)$ coincide with $Lip\alpha$. For $\alpha = 1, p = \infty$, we have

$$Lip(1,\tilde{C}) = Lip \ 1, \tag{1.9}$$

but

$$Lip^*(1,\tilde{C}) = Z \tag{1.10}$$

is the Zygmund space [8], which is characterized by (1.7) with k = 2.

Hölder space H_{α} [6]. For $0 < \alpha \leq 1$, let

$$H_{\alpha} = \{ f \in C_{2\pi} : w(f, t) = O(t^{\alpha}) \}.$$
(1.11)

It is known [6] that H_{α} is a Banach space with the norm $\|.\|_{\alpha}$ defined by

$$\|f\|_{\alpha} = \|f\|_{c} + \sup_{t>0} t^{-\alpha} w(t), 0 < \alpha \le 1$$

$$\|f\|_{0} = \|f\|_{c}$$
(1.12)

and

$$H_{\alpha} \subseteq H_{\beta} \subset C_{2\pi}, 0 < \beta \le \alpha \le 1.$$
(1.13)

Hölder space H_{α} [3]. For $0 < \alpha \leq 1$, we write

$$H(\alpha, p) = \{ f \in L_p[0, 2\pi] : 0 (1.14)$$

and introduce the norms $\|.\|_{(\alpha,p)}$ as follows:

$$\|f\|_{(\alpha,p)} = \|f\|_{p} + \sup_{t>0} t^{-\alpha} w(f,t)_{p}, 0 < \alpha \le 1$$

$$\|f\|_{(0,p)} = \|f\|_{p}.$$
(1.15)

It is known [3] that $H(\alpha, p)$ is a Banach space for $p \ge 1$ and a complete *p*-normed space for 0 . Also

$$H(\alpha, p) \subseteq H(\beta, p) \subseteq L_p, 0 < \beta \le \alpha \le 1.$$
(1.16)

Note that $H(\alpha, \infty)$ is the space H_{α} defined above.

For the study of degree of approximation problems the natural way to proceed to consider with some restrictions on some modulus of smoothness as prescribed in H_{α} and $H_{(\alpha,p)}$ spaces. As we have seen above, only a constant function satisfies Lipschitz condition for $\alpha > 1$. However for generalized Lipschitz class there is no such restriction on α . We require a finer scale of smoothness than is provided by Lipschitz classes. For each $\alpha > 0$, Besov developed a reasonable technique for restricting moduli of smoothness by introducing a third parameter q (in addition to p and α) and applying α, q norms (rather than α, ∞ norms) to the modulus of smoothness $w_k(f, .)_p$.

Besov space: Let $\alpha > 0$ be given and let $k = [\alpha] + 1$. For $0 < p, q \le \infty$ the Besov space ([4], p.54) $\alpha_q(L_p)$ is defined as follows:

$$B_q^{\alpha}(L_p) = \{ f \in L_p : |f|_{B_q^{\alpha}(L_p)} = ||w_k(f,.)||_{\alpha,q} \text{ is finite } \}$$
(1.17)

where

$$\|w_k(f,.)\|_{\alpha,q} = \begin{cases} \left(\int_0^\infty \left(t^{-\alpha} w_k(f,t)_p \right)^q \frac{dt}{t} \right)^{\frac{1}{q}}, & 0 < q < \infty \\ \sup_{t>0} t^{-\alpha} w_k(f,t)_p, & q = 0 \end{cases}$$
(1.18)

It is known ([4], p.55) that $||w_k(f, .)_p||_{\alpha,q}$ is a semi norms if $1 \le p, q \le \infty$ and a quasi seminorm in other cases. The Besov norm for $B_q^{\alpha}(L_p)$ is

$$||f||_{B^{\alpha}_{q}(L_{p})} = ||f||_{p} + ||w_{k}(f, .)_{p}||_{\alpha, q}$$
(1.19)

It is known ([7], p.237) that for 2π -periodic function f the integral \int_0^{∞} in (1.18) is replaced by \int_0^{π} . We know ([4], p.56),([7], p.236) the following inclusion relations :

- (I) For fixed α and p
- $B_q^{\alpha}(L_p) \subset B_{q_1}^{\alpha}(L_p), q < q_1$
- (II) For fixed p and q
- $B_q^{\alpha}(L_p) \subset B_q^{\beta}(L_p), \beta < \alpha$
- (III) For fixed α and q
- $B_q^{\alpha}(L_p) \subset B_q^{\alpha}(L_{p_1}), p_1 < p$

Special cases of Besov space.

For $q = \infty, B^{\alpha}_{\infty}(L_p), \alpha > 0, p \ge 1$ is same as $Lip^*(\alpha, L_p)$ the generalised Lipschitz class and the corresponding norm $\|.\|_{B^{\alpha}_{\infty}(L_p)}$ is given by

$$||f||_{\beta_{\infty}^{\alpha}(L_p)} = ||f||_p + \sup_{t>0} t^{-\alpha} w_k(f,t)_p$$
(1.20)

for every $\alpha > 0$ with $k = [\alpha] + 1$. In the special case when $0 < \alpha < 1, B^{\alpha}_{\infty}(L_p)$ space reduces to $H(\alpha, p)$ space due to Das, Ghosh and Ray[3] and the corresponding norm is given by

$$||f||_{B^{\alpha}_{\infty}(L_p)} = ||f||_{(\alpha,p)} = ||f||_p + \sup_{t>0} t^{-\alpha} w(f,t)_p, 0 < \alpha < 1$$
(1.21)

For $\alpha = 1$, the norm is given by

$$\|f\|_{B'_{\infty}(L_p)} = \|f\|_p + \sup_{t>0} t^{-1} w_2(f, t)_p.$$
(1.22)

Note that $||f||_{B^1_{\infty}(L_p)}$ is not same as $||f||_{(1,p)}$ and the space $B^1_{\infty}(L_p)$ includes the space $H(1,p), p \ge 1$. If we further specialize by taking $p = \infty, B^{\alpha}_{\infty}(L_{\infty}), 0 < \alpha < 1$ coincides with H_{α} space due to Prossdorf [6] and the norm is given by

$$||f||_{B^{\alpha}_{\infty}(L_{\infty})} = ||f||_{\alpha} = ||f||_{c} + \sup_{t>0} t^{-\alpha} w(f,t), 0 < \alpha < 1.$$
(1.23)

For $\alpha = 1, p = \infty$, the norm is given by

$$||f||_{B^1_{\infty}(L_{\infty})} = ||f||_c + \sup_{t>0} t^{-1} w_2(f, t), \alpha = 1$$
(1.24)

which is different from $||f||_1$ and $B^1_{\infty}(L_{\infty})$ includes the H_1 space.

2 Introduction:

Let f be a 2π -periodic function and let $f \in L_p[0, 2\pi], p \ge 1$. The Fourier series of f at x is given by

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x)$$
(2.1)

In the case 0 , we can still regard (2.1) as the Fourier series of <math>f by further assuming $f(t) \cos nt$ and $f(t) \sin nt$ are integrable.

Prossdorf [6] first obtained the following on the degree of approximation of functions in H_{α} using Fejer's mean of Fourier series.

Theorem A Let $f \in H_{\alpha}(0 < \alpha \leq 1)$ and $0 \leq \beta < \alpha \leq 1$. Then

$$\|\sigma_n(f) - f\|_{\beta} = O(1) \begin{cases} \frac{1}{n^{\alpha - \beta}}, & 0 < \alpha < 1\\ \\ \frac{(\log n)^{1 - \beta}}{n^{1 - \beta}}, & \alpha = 1, \end{cases}$$

where $\sigma_n(f)$ is the Fejer means of the Fourier series of f. The case $\beta = 0$ of Theorem A is due to Alexists [1]. Chandra [2] obtained a generalisation of Theorem A in the Nörlund (N, p) and (\overline{N}, p) transform set up. Later Mohapatra and Chandra [5] studied the problem by matrix means and obtained the above results as corollaries. Das, ghosh and Ray[3] further generalised the work by studying the problem for functions in $H(\alpha, p)$ space $(0 < \alpha \leq 1, p \geq 1)$ by matrix means of their Fourier series in the generalised Hölder metric.

In the present work we propose to study the degree of approximation of functions in Besov space which is a generalisation of $H(\alpha, p)$ space.

In what follows, we present some notations which we need in the sequel We write

$$\phi_x(u) = f(x+u) + f(x-u) - 2f(x) \tag{2.2}$$

Let $S_n(f; x)$ denote the n th partial sum of the Fourier series. It is known ([9], vol.I.p.50) that

$$S_n(f;x) - f(x) = \frac{1}{\pi} \int_0^\pi \phi_x(u) D_n(u) du$$
 (2.3)

where the Dirichlet's kernel

$$D_n(x) = \frac{1}{2} + \sum_{\nu=0}^n \cos\nu u = \frac{\sin\left(n + \frac{1}{2}\right)u}{2\sin u/2}$$
(2.4)

Let σ_n^{γ} denote the Cesàro mean $(C, \gamma), \gamma > 0$ of the Fourier series. Then

$$\sigma_n^{\gamma}(f;x) = \frac{1}{A_n^{\gamma}} \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} S_{\nu}(f;x)$$
(2.5)

where A_n^{γ} is given by the formula ([9], vol.I, p.76)

$$\sum_{n=0}^{\infty} A_n^{\gamma} x^n = (1-x)^{-\gamma-1}, \gamma > -1, |x| < 1$$
(2.6)

We know ([9], Vol. I, p. 94) that

$$l_n^{\gamma}(x) \equiv \sigma_n^{\gamma}(f;x) - f(x) = \frac{1}{\pi} \int_0^{\pi} \phi_x(u) K_n^{\gamma}(u) du \qquad (2.7)$$

where

$$K_n^{\gamma}(u) = \frac{1}{A_n^{\gamma}} \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} D_{\nu}(u)$$
(2.8)

3 Main Theorem

We prove the following theorem

Theorem Let $0 < \alpha < 2$ and $0 < \beta < \alpha$. If $f \in B_q^{\alpha}(L_p), p \ge 1$ and $1 < q \le \infty$, then

$$\|l_n^{\gamma}(.)\|_{B_q^{\beta}(L_p)} = O(1) \begin{cases} \frac{1}{n^{\gamma}}, \alpha - \beta > \gamma, & 0 < \gamma \le 1\\ \frac{1}{n^{\alpha - \beta}}, \alpha - \beta < \gamma, & 0 < \gamma \le 1\\ \frac{(\log n)^{1 - \frac{1}{q}}}{n^{\gamma}}, \alpha - \beta = \gamma, & 0 < \gamma \le 1 \end{cases}$$

and

$$\|l_n^{\gamma}(.)\|_{B_q^{\beta}(L_p)} = O(1) \begin{cases} \frac{1}{n}, \alpha - \beta > 1, & 1 \le \gamma < 2\\ \frac{1}{n^{\alpha - \beta}}, \alpha - \beta < 1, & 1 \le \gamma < 2\\ \frac{(\log n)^{1 - \frac{1}{q}}}{n^{\gamma}}, \alpha - \beta = 1, & 1 \le \gamma < 2 \end{cases}$$

References

- Alexists, G. Convergence problems of orthogonal series (1961), Newyork, Pergman Press.
- [2] Chandra, P. On the generalised Fejer means in the metric of the Hö lder space, Math. Nachr. 109(1982), 39-45.
- [3] Das,G.Ghosh, J and Ray,B.K., Degree of approximation of functions by their fourier series in the generalized Hölder metric, proc. Indian Acad. Sci(Math.Sci) Vol 106(1996), 139-153.
- [4] Devore Ronald A, Lorentz,G. Constructive approximation, Springer Verlag, Berlin Neidelberg, New York, 1993.
- [5] Mohapatra, R.N. and Chandra, P. Degree of approximation of functions in the Hölder metric, Acta Math.Hung. 41(1-2)(1983), 67-76.

- [6] Prossdorf,S.Zur Konvergenz der Fourier reihen Hölder stetiger Funktionen, Math.March.69(1975), 7-14.
- [7] Wojtaszczyk. P, A Mathematical Introduction to Wavelets, London mathematical Society Stuents texts 37, Cambridge University Press, New York, 1997.
- [8] Zygmund, A. Smosth functions, Duke Math. Journal 12(1945), 47-56.
- [9] Zygmund, A. trigonometric Series, Volume I and II (Combined), Cambridge University press, New York, 1993.