Solutions HWB9

 

6.16:  Hypergeometric.  Here N = 11, N1 = 3, N0 = 8, n = 6. f(k) = (k take 3)(6-k take 8)/(6 take 11)

6.16a:  Pr(0 green marbles) = f(0) = (0 take 3)(6 take 8)/(6 take 11) =  2/33 = .0609

6.16b:  Pr(1 green marble) = f(1) = (1 take 3)(5 take 8)/(6 take 11) = 4/11

6.16c:  Pr(1 green marbles) = f(3) = (3 take 3)(3 take 8)/(6 take 11) = 4/33

6.16d:  Pr(at least one green marble) = 1 – Pr(0 green marbles) = 1 – 2/33 = 31/33

6.16e:  mu = n(pi) = 6(3/11) = 18/11 =

6.16f:  sigma = sqrt[(N-n)/(N-1)]sqrt[n(pi)(1-pi)] = sqrt[72]/11 = 6sqrt[2]/11 =  .7714

 

6.20: This is binomial. pi = 3/70, n = 10, f(k) = (k take 10)(3/7)^ k(7/10)^(10-k)

6.20a:  Pr(no deaths) =  f(0) = (1)(1)(3/70)^10

6.20b:  Pr(1 death) = f(1) = (10)(67/70)(3/70)^9

6.20c:  Pr(at least 9 recover) = Pr(no more than 1 death) = (a) + (b) = (3/70)^10 + (10)(67/70)(3/70)^9

 

6.26:  Hypergeometric. Here N = 12, N1 = 3, N0 = 9, n = 2.  f(k) = (k take 3)(2-k take 9)/(2 take 12).

6.26a:   

k     f(k) = (k take 3)(2-k take 9)/(2 take 12).

0     12/22

1      9/22

2      1/22

       

6.26b: 

F(x) =     0    if x < 0, 

F(x) = 12/22 if  0 <= x < 1

F(x) = 21/22 if  1 <= x < 2

F(x) = 22/22 if  2 <= x

 

6.26c:  mu = n(pi) = 2(3/12) = ½ = .5

6.26d:  sigma^2 = (N – n)/(N – 1)(n)(pi)(1-pi) = (10)/(11)(2)(3/12)(9/12) = 15/44