Solutions HWA4

 

11.14a: 

mu_{SUM} = n*mu = 10*40 = 400 minutes

sigma_{SUM} = sqrt[n]*sigma = sqrt[10]*15 = 47.43 minutes

 

11.14b:  6 hours = 360 minutes. 

Pr(SUM <= 360) = Pr(Z <= (360 – 400)/47.43) = Pr(Z < = -.8433) = normalcdf(-999999,360,400,sqrt[10]*15) = .1995

 

11.20a:  Pr(IQ > 115) = Pr(IQ > 115.5) = normalcdf(115.5,9999999,100,15) = .1507

11.20b:  (.1507)^2 = .0227

11.20c:  .1507 + .1507 - .0227 = .2787    or   1 – (1- .1507)^2 = .2787

11.20d:  Pr(X-bar > 115) = Pr(z > (115 – 100)/(15/sqrt[2])) = normalcdf(115,99999999,100,15/sqrt(2)) = .0786  (Here we do not use the continuity correction.  If you do, then you get Pr(X-bar > 115) = Pr(SUM > 230) = Pr(SUM > 230.5) = .0752) 

 

11.38a:  Pr(P < .19) = Pr(K < 76) = Pr( < 75.5) = Pr(Z < (75.5 – 80)/sqrt[400*.20*.80]) = .2869

11.38b:  Pr(SUM > 19,000,000) = Pr(Z > (19000000 – 18000000)/sqr[400]*25000) = .0228