
INTRODUCTION TO
BIOSTATISTICS

1 WHAT IS STATISTICS?

Commonly the word statistics means the arranging of data into charts, tables, and graphs
along with the computations of various descriptive numbers about the data. This is a part
of statistics, called descriptive statistics, but it is not the most important part. The most
important part is concerned with reasoning in an environment where one doesn’t know, or
can’t know, all of the facts needed to reach conclusions with complete certainty. One deals
with judgments and decisions in situations of incomplete information. In this introduction we
will give an overview of statistics along with an outline of the various topics in this course.

2 SAMPLING AND ESTIMATION

Harris Poll. Louis Harris and Associates (www.harrisinteractive.com) conduct polls on
various topics, either face-to-face, by telephone, or by the internet. In one survey on health
trends of adult Americans conducted in 1991 they contacted 1,256 randomly selected adults
by phone and asked them questions about diet, stress management, seat belt use, etc. One of
the questions asked was “Do you try hard to avoid too much fat in your diet?” They reported
that 57% of the people responded YES to this question, which was a 2% increase from a
similar survey conducted in 1983. The article stated that the margin of error of the study was
plus or minus 3%.

This is an example of an inference made from incomplete information. The group under
study in this survey is the collection of adult Americans, which consists of more than 200
million people. This is called the population. If every individual of this group were to be
queried, the survey would be called a census. Yet of the millions in the population, the Harris
survey examined only 1,256 people. Such a subset of the population is called a sample.

Once every ten years the U.S. Census Bureau conducts a survey of the entire U.S. pop-
ulation. The year 2000 census cost the government billions of dollars. For the purposes of
following health trends, it’s not practical to conduct a census. It would be too expensive, too
time consuming, and too intrusive of people’s lives. We shall see as we progress through this
course that, if done carefully, 1,256 people are sufficient to make reasonable estimates of the
opinion of all adult Americans. Samuel Johnson was aware that there is useful information in
a sample. He said that you don’t have to eat the whole ox to know that the meat is tough.

The people or things in a population are called units. If the units are people, they are
sometimes called subjects. A characteristic of a unit (such as a person’s weight, eye color,
or the response to a Harris Poll question) is called a variable. If a variable has only two
possible values (such as a response to a YES or NO question, or a person’s sex) it is called
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a dichotomous variable. If a variable assigns one of several categories to each individual
(such as person’s blood type or hair color) it is called a categorical variable. And if a
variable assigns a number to each individual (such as a person’s age, family size, or weight),
it is called a quantitative variable.

A number derived from a sample is called a statistic, whereas a number derived from the
population is called a parameter. Parameters are is usually denoted by Greek letters, such
as π, for population percentage of a dichotomous variable, or µ, for population mean of a
quantitative variable. For the Harris study the sample percentage p = 57% is a statistic.
It is not the (unknown) population percentage π, which is the percentage that we would
obtain if it were possible to ask the same question of the entire population.
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Figure 1 Parameter and statistic for a dichotomous variable.

Inferences we make about a population based on facts derived from a sample are uncertain.
The statistic p is not the same as the parameter π. In fact, if the study had been repeated,
even if it had been done at about the same time and in the same way, it most likely would
have produced a different value of p, whereas π would still be the same. The Harris study
acknowledges this variability by mentioning a margin of error of ±3%.

How can they say that the margin of error is plus or minus 3 percent, when such a small
sample of all adult Americans were contacted? This is one of the questions that we will deal
with in the course.
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SIMULATION

Consider a box containing chips or cards, each of which is numbered either 0 or 1. We want to
take a sample from this box in order to estimate the percentage of the cards that are numbered
with a 1. The population in this case is the box of cards, which we will call the population
box. The percentage of cards in the box that are numbered with a 1 is the parameter π. In
the Harris study the parameter π is unknown. Here, however, in order to see how samples
behave, we will make our model with a known percentage of cards numbered with a 1, say
π = 60%. At the same time we will estimate π, pretending that we don’t know its value, by
examining 25 cards in the box.

We take a simple random sample with replacement of 25 cards from the box as
follows. Mix the box of cards; choose one at random; record it; replace it; and then repeat
the procedure until we have recorded the numbers on 25 cards. Although survey samples are
not generally drawn with replacement, our simulation simplifies the analysis because the box
remains unchanged between draws; so, after examining each card, the chance of drawing a
card numbered 1 on the following draw is the same as it was for the previous draw, in this
case a 60% chance. Let’s say that after drawing the 25 cards this way, we obtain the following
results, recorded in 5 rows of 5 numbers:

0 1 1 1 1
1 0 1 1 0
1 0 1 0 1
0 0 0 0 1
1 0 1 0 1

Based on this sample of 25 draws, we want to guess the percentage of 1’s in the box. There
are 14 cards numbered 1 in the sample. This gives us a sample percentage of p = 14/25 =
.56 = 56%. If this is all of the information we have about the population box, and we want
to estimate the percentage of 1’s in the box, our best guess would be 56%. Notice that this
sample value p = 56% is 4 percentage points below the true population value π = 60%. We
say that the random sampling error (or simply random error) is −4%.

Equivalently, instead of using a box of cards, we can simulate this experiment by generating
random numbers using a programmable calculator, a computer program such as Minitab, or a
table of random numbers. We will use Table 1 of random digits at the end of our textbook (on
pages 638-9) to demonstrate the procedure. For convenience the random digits in the table
are grouped into five digits. Each of the 50 rows holds 20 groups of fives. The entire table
holds 50 · 20 · 5 = 5000 random digits. To guard against using the same random numbers in
every simulation we select to start in a random row and column, say row 16 column 06 (we
can obtain a starting point by tossing a coin or paper clip on the page). The first 25 digits in
row 16, starting with column 06, are

30144 29166 20915 53462 42573.

Since we want a 60% chance of drawing a 1, we assign the value 1 to the six random digits
0, 1, 2, 3, 4, 5 and assign the value 0 to the four digits 6, 7, 8, 9, resulting in the following values

11111 10100 11011 11101 11101.
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In this simulation we ended up with 19 1’s, which results in the statistic p = 19/25 = .76 =
76%. The random sampling error is +16%.

Continuing where we left off in row 16, the next 25 digits result in

01111 11101 10010 10101 01001.

This time we have 15 1’s to obtain a statistic of p = 60% and a random sampling error of 0%.

One more time,
11111 01101 10111 00111 10110,

gives us 18 1’s with p = 72%, and a random error of +12%.

The random errors were −4% from the box of cards and +16%, 0%, and +12% from the
table of random numbers.

ERROR ANALYSIS

An experiment is a procedure which results in a measurement or observation. The Harris
poll is an experiment which resulted in the measurement (statistic) of 57%. An experiment
whose outcome depends upon chance is called a random experiment. On repetition of such
an experiment one will typically obtain a different measurement or observation. So, if the
Harris poll were to be repeated, the new statistic would very likely differ slightly from 57%.
Each repetition is called an execution or trial of the experiment.

The four simulations above are trials of a random experiment that resulted in four different
percentages. The random sampling errors of the four simulations average out to

AV:
−4% + 16% + 0% + 12%

4
= +6%.

Note that the cancellation of the positive and negative random errors results in a small average.
Actually with more trials, the average of the random sampling errors tends to zero.

So in order to measure a “typical size” of a random sampling error, we have to ignore the
signs. We could just take the mean of the absolute values (MA) of the random sampling
errors. For the four random sampling errors above, the MA turns out to be

MA:
| − 4%|+ |+ 16%|+ |0%|+ |+ 12%|

4
= +8%.

The MA is difficult to deal with theoretically because the absolute value function is not
differentiable at 0. So in statistics, and error analysis in general, the root mean square
(RMS) of the random sampling errors is generally used. For the four random sampling errors
above, the RMS is

RMS:

√

(−4%)2 + (+16%)2 + (+0%)2 + (+12%)2

4
=
√

120% = 10.2%.

The RMS is a more conservative measure of the typical size of the random sampling errors in
the sense that MA ≤ RMS.
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For a given experiment the RMS of all possible random sampling errors is called the
standard error (SE). We will more formally study the standard error later in the semester.
For example, whenever we use a random sample of size n and its percentages p to estimate
the population percentage π, we have

SEp =

√

π(1− π)
n

≤ 1
2
√

n
, (1)

which for n = 25 comes out SE = .097979 · · · ≤ .10. Notice that the estimate SEp ≤ 10% is
reasonably close to the RMS = 10.2% that we obtained in our four simulations. As the number
of simulations increase, the RMS will tend to the SE. The inequality in (1) is useful because,
in a situation such as the Harris poll, the value of the parameter π is generally unknown.

Notice from equation (1) that, other things being equal, as the size n of the random sample
goes up, the standard error goes down in proportion to the square root of the sample size.
So for samples four times larger, the standard error will be 1/

√
4 = 1/2 as large. This means

that, for samples of size 100, the standard error will be no more than about ± 1
2 · 10% = ±5%.

If we combine our four samples in our simulations of size 25, we notice that we have a total
of 14 + 13 + 19 + 12 = 58 cards numbered 1, which gives us p = 58% and thus a random error
of −2%. Another sample of 100, would likely give us a different random sampling error.

Although the standard error will be studied in more detail in later units, at this point
we want to observe an interesting property. The standard errors of independent trials of a
random experiments have a Pythagorean relationship, just as right triangles in geometry. If
A is a measurement of a parameter α with a standard error SEA, and B is an independent
measurement of a parameter β with a standard error SEB , then A + B is a measurement of
α + β with a standard error

√

SEA
2 + SEB

2. In error analysis it is convenient to write

A = α± SEA,

B = β ± SEB ,

and

A + B = α + β ±
√

SEA
2 + SEB

2.

Note that the measurements add, but not the SE’s. This property results in one of the
important parts of the law of averages.
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Figure 2 Pythagorean property of measurement error.
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To illustrate this relationship, let’s say that a person commutes to work by car. She uses
the car’s trip odometer to measure the distance traveled. After many trips to work she observes
an average reading of 24.3 miles. Due to changes in traffic, weather, and other conditions,
each trip results in a slightly different odometer reading, from which she estimates that the
SE is about .4 miles. If A represents the distance measured on any given trip, we can write

A = 24.3± .4 miles.

This does not mean that every trip varies by .4 miles, rather it means that for such trips
odometer readings average about 24.3 miles and vary by about .4 miles, or so.

She also often travels to a cottage on weekends. The distance to the cottage is greater than
the commute, and the odometer readings are more variable because the trips involve stops
for fuel and fast food. Let’s say that an odometer reading B for a trip to the cottage has the
formula

B = 67.2± 1.1 miles.

A trip from work followed by a trip to the cottage will have a total odometer reading C, which
can be calculated by adding the readings A and B. The Pythagorean relationship results in

A + B = 24.3 + 67.2 ±
√

(0.4)2 + (1.1)2 miles

C = 91.5 ± 1.2 miles.

EXERCISES FOR SECTION 2

1. A medium apple has an average of about 80 calories. However, the number of calories
A varies with the size and type of apple. Let’s say that the standard error is about
SEA = 10 calories. Similarly the number of calories B in a bran muffin is about 400
calories with a standard error of about SEB = 40 calories. Let C be the total number of
calories in a lunch consisting of a medium apple and a bran muffin. Find the estimated
total number of calories of C along with the standard error SEC . Do the same for a
lunch which also includes a cup of yogurt, which has 220 calories, give or take 15 calories,
or so.

2. For a biology lab experiment you have to randomly select four mice. The mice to be
chosen come from a population bred to weigh about 30 grams, give or take 5 grams,
or so. The total weight T of the four mice will be about grams, give or take

grams, or so. Use the Pythagorean property of standard errors.

3 PRECISION VERSUS CONFIDENCE

The “margin of error” of 3% mentioned in the Harris survey article is not the standard error.
It should be more precisely stated as the margin of error for 95% confidence. That is, about
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95% of the time, the random error will be within this “margin in error.” In the news media,
the 95% condition is generally assumed but not always explicitly mentioned. We will show
later in the course, that, for large random samples as in the Harris survey, this 95% margin of
error is about 1.96 times (roughly twice) the standard error. Using the inequality in formula
(1) we note that for n = 1,256, we obtain SEp ≤ 1

2
√

1256
= .0141 = 1.41%, which is close to

half of their reported 3%. Since they obtained a statistic of p = 57%, they state that they are
95% confident that p = 57% is within 3 percentage points of the true, but unknown, parameter
π.

The margin of error is a measure of the precision of the estimate. However, it is inversely
related to the level of confidence in the estimate. For a given sample size, if we want to
increase confidence, we have to decrease the precision, and visa versa. For example, we can
be 100% confident that π is somewhere between 0% and 100%. Although our confidence is
high, the precision is so poor it makes the statement worthless. On the other hand, we will
later show that a margin of error of ±three standard errors, which gives us a precision of
±3 · 1

2
√

1256
= ±.0423 = ±4.23%, will give us a statement with 99.7% confidence. And to get

a statement with 99% confidence we need a margin of error of about ±2.6 standard errors,
which is about ±3.6%. Using a margin of error of 1 standard error will result in a statement
with only 68% confidence. At this point, don’t worry about the specific percentages and levels
of confidence. Details and derivations will come in later in the semester.

In statistics, for a given data set, precision is inversely related to the
level of confidence. However, by increasing the sample size both precision
and level of confidence can be improved.

This Harris Poll example shows how an estimate of a unknown parameter is made by
examining a random sample. This is part of the study of inferential statistics. Our simu-
lation, on the other hand, involves a population box whose content is known. Examining the
different samples that are possible and likely from a population with a know parameter is part
of sampling theory. An understanding of the behavior of samples from a known population
is a prerequisite of inferential statistics.

Note on estimation errors. It is important to realize that random sampling error is
not the only source of error in an experiment. Nonresponse bias is a problem encountered
whenever a survey or census is attempted. Nonresponse rates are not uniform across all
segments of a population, so that nonresponse could affect some groups more than others,
biasing the results.

Another source of bias is response bias, which occurs when a respondent gives an incorrect
response. The respondent may be influence by the phrasing of the question, or he may not
recall something correctly, or he may simply be lying.

Measurement bias can also lead to errors. If a measurement procedure is not being
applied correctly or consistently, all readings may be off.

Selection bias is another cause of error. If you haphazardly select lab mice for an exper-
iment, generally you catch the slower one, the fatter ones, and the ones more friendly. If the
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remaining mice are used as controls, the two groups start the experiment of different vigor,
weight, and temperament.

Whereas random sampling error can be reduced by increasing the size of
the sample, sampling bias cannot. Sampling bias can only be reduced by
changing the method of collecting the data.

EXERCISES FOR SECTION 3

3. As part of a 1990 study on the causes of asthma, the parents of 939 seven-year old
children in five German cities were interviewed1. Of these children, the parents reported
that 57 had had a doctor’s diagnosis of asthma at some time in their lives. Find the
statistic p and estimate the standard error of this statistic.

4. The New York Times reported on a poll conducted October 18-21, 2000. This ran-
dom phone survey found that among 1,010 registered votes, 45% responded “yes” to
the question “Does the presidential candidate George W. Bush have the ability to deal
wisely with an international crisis?” The New York Times explained “In theory, in 19
cases out of 20 the results based on such a sample will differ by no more than three
percentage points in either direction from what would have been obtained by seeking
out all American adults.” Fill in, choosing from the options

population, parameter, sample, statistic, unknown, π, p, 45%, 3%, 1.5%.
The symbol for the parameter is . The value of parameter is . The col-
lection of 1010 registered voters is called the . The symbol for the statistic is

. The value of the statistic is . The standard error is estimated to be

. The 95% margin of error is estimated to be .

4 HYPOTHESIS TESTING

Salk Vaccine Trials. According to an article by Paul Meier2, over a million children
participated in a trial in 1954 of the Salk vaccine to see whether it would protect children
against polio. In one part of the study as summarized in the table below, 401,974 children
were injected with either the Salk vaccine or a salt solution placebo. The injections of the
vaccine and placebo were assigned to the children at random. Furthermore the trial was
double blind; that is, neither the children nor the diagnosing physicians were aware of who
had been given vaccine or who had been given the salt solution.

1Susanne Lau et al, Early exposure to house-dust mite and cat allergens and development of childhood
asthma: a cohort study. The Lancet 356(2000), 1392-97.

2Paul Meier, The Biggest Public Health Experiment Ever: The 1954 Field Trial of the Salk Poliomyelitis
Vaccine. This article appears in Statistics a Guide to the Unknown, Third Edition, Judith Tanur et al, editors,
Duxbury Press, 1989.
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Summary of Randomized Double Blind Salk Vaccine Trials.

Number of Fatal Paralytic Non-Paralytic Total
Group Subjects Polio & Fatal Polio Polio Cases
Vaccine 200,745 0 33 24 57
Placebo 201,229 4 115 27 142
TOTALS 401,974 4 148 51 199

Does the vaccine prevent death from polio? None of the children who received
the Salk vaccine died of polio whereas four of the children in the placebo group died of polio.
This seems to be evidence for the effectiveness of the vaccine, but how strong is the evidence?
Polio was not a common disease and the incidence of it would vary from year to year. Before
the vaccine was developed, it was conceivable to have only four deaths in a group of about
400,000, which is a rate of 1 per 100,000.

For the sake of argument, let us suppose that the Salk vaccine was completely ineffective
in preventing death from polio (this is called the null hypothesis). That is, suppose the
vaccine prevented no deaths from polio, so that the four unfortunate children who died of
polio just happened to fall into the placebo group by chance.

Assuming the null hypothesis, the vaccine had no effect and the four children would have
died with or without the vaccine. The four children fell into the placebo group by chance, as if
by the toss of a coin, say heads for vaccine and tails for placebo. What is the chance that, for
all four of the children who died, the coin came up tails? It is certainly not impossible for a
coin to come up tails four times in a sequence. The chance of tails on each toss is 50%, so the
chance of four tails in sequence is 50% of 50% of 50% of 50%, or (.50)4 = .0625 = 6.25%. Such
a low percentage is evidence for the effectiveness of the Salk vaccine in preventing death, but
the evidence is not overwhelming. It would not be considered to be proof beyond a reasonable
doubt.

Now let us consider whether the vaccine was effective against paralytic polio.
Of the children who were injected with the Salk vaccine 33 of them were later diagnosed
with paralytic polio compared with 115 of the children in the placebo group. Using a similar
analysis, we suppose the null hypothesis that the vaccine was completely ineffective against
paralytic polio; that is, the 33 + 115 = 148 would have gotten paralytic polio with or without
the vaccine. This is as if 148 tosses of a coin come up 33 heads and 115 tails. In 148 tosses
you expect about half of them to be heads; that is, about 74 should be heads. But what is the
chance that 148 tosses result in as few as 33 heads? Although it is not impossible to get so
few heads, we shall see later when we study probability theory that the probability is less
than 1 in 255 billion. Given this evidence, retaining the null hypothesis would be outrageous.
We have no reasonable choice but to reject the null hypothesis and conclude that the Salk
vaccine is effective against paralytic polio.

5 PREVIEW

Here are some of the issues that we will consider this semester.
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• How do you take a sample? What is a random sample? Unless you carefully design
an experiment, the data collected may be subject to bias. In the Harris study, how do
you account for people that can’t be reached by phone, don’t answer the phone, refuse
to participate, misunderstand the question, lie, and so on? These are all parts of the
topic of the design of experiments. Chapter 8 of the textbook deals with this topic.
However, the issues involved are pointed out throughout the book.

• Once you have a sample, which consists of a collection of data, you want to organize
and summarize this data. This can be done by the use of tables, graphs, and numbers
(statistics) such as the mean, median, range, and standard deviation. This topic is called
descriptive statistics, which is discussed in Chapter 2 of the textbook.

• Probability theory, studied in Chapter 3 and 4 of the textbook, is the theoretical
tool of statistics. We saw in Example 2 how probability theory is used in the testing
of hypotheses. There were no deaths in the treatment group, yet the evidence is not
convincing that the Salk vaccine prevented any deaths. On the other hand 22% of the
148 cases of paralytic polio fell into the treatment group, which is overwhelming evidence
of the effectiveness of the vaccine in preventing paralytic polio.

• Sampling theory is in Chapter 5 of the text. It is essential to know the behavior of
random samples from known populations before we do the inverse of making inferences
about unknown populations through the examination of random samples.

• Chapter 6 deal with the examination of data from unknown populations in order to make
estimates of parameters of populations. We consider precision of estimates and the
level of confidence of estimates.

• In Chapter 7 and 9 we will consider the statistical rules of evidence and how data
can be used in statistical test of hypotheses. We examine samples from unknown
populations and, with the help of sampling theory, we determine the plausibility of
various hypotheses about the populations.

• Chapters 10 and 11 is a continuation of estimation and hypothesis testing, except that
we deal with multiple comparisons of treatments.

• In Chapter 12 we study the statistical relationship of variables. In algebra an equation
such as y = x2 describes a functional (or deterministic) relationship between x and y.
Statistical relationships are not functional. For example, given a person’s height x at age
14 and the same person’s height y at age 21, the variables x and y are statistically (or
stochastically) related, but not functionally related. Correlation measures the strength
of the relationship of two statistical variables. Generally tall 14 year-olds become tall
21 year-olds; and short 14 year-olds become short 21 year-olds, but you couldn’t write
an deterministic equation between x and y. We say that the two variables are positively
correlated. Similarly, there is a negative correlation between the weight of a car and
its fuel economy. We can use the strength of a relationship to predict the value of one
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variable from another. For example, if you had to predict the height of a 21 year old
person, without knowing any other facts, you could use a population box model. This
would result in a prediction consisting of the mean of the population box, or the average
height for all 21 year olds, plus or minus a standard error. However, if you know the
person’s height at age 14, along with other facts such as the correlation coefficient, the
prediction can be greatly improved. The prediction will not be perfect, because the
relationship is statistical. But the prediction will have more precision than one made
without the knowledge of the height at age 14. The prediction of one variable from
others is known as regression analysis.

• Chapter 13 is merely an overview of all of the statistical methods presented in the text.

6 REVIEW EXERCISES

5. Cyberchondriacs are people who go on-line to search for information about health, med-
ical care, or particular diseases. In a nationwide Harris Poll of 1,001 adults, surveyed
between May 26 and June 10, 2000, 56% said that they were on-line from home, office,
school, library, or other location. Also 86% of these 56% said that they have looked for
health information on-line. This means that 48% of all American adults have looked for
health information on-line. Based on a the U.S. Census Bureau estimate of 204 million
American adults, this amounts to about 98 million people. In this situation, the number
56% is which of the following: (a) a population; (b) a sample; (c) a parameter; (d) a
statistic. The number 98 million is an estimate of which of the above.

6. Consider walnuts packed in “one pound” bags. Although the nominal weights of the
bags are one pound, it’s hard to put exactly one pound in each bag. As it turns out the
bags vary in weight by a standard error of about 1 ounce. Use the Pythagorean property
of standard errors to estimate the packaging error for the total weight of two packages.
What about the packaging error in a box of 16 bags?

7. If the children who took part in the placebo control study of the Salk vaccine trials were
assigned to the vaccine and placebo groups by chance, why weren’t the two groups the
same size?

8. Why do you think so many children were needed for the Salk vaccine trials?

9. Tossing a coin n times and counting heads is like n draws from a population box model
consisting of cards numbered with zeros and ones, and with a population percentage of
π = .50 = 50%. Suppose I toss a coin 100 times and compute the sample percentage
p of heads. Use formula (1) to compute the standard error for the statistic p. Now
considering 400 tosses, what happens to SEp?


