
A MINUS SIGN THAT USED TO ANNOY ME BUT NOW I KNOW WHY
IT IS THERE

(TWO CONSTRUCTIONS OF THE JONES POLYNOMIAL)

PETER TINGLEY

Abstract. There are (at least) two well known constructions of link invariants. One uses
skein theory: you resolve each crossing of the link as a linear combination of things that don’t
cross, until you eventually get a linear combination of links with no crossings, which you turn
into a polynomial. The other uses quantum groups: you construct a functor from a topological
category to some category of representations, in such a way that (oriented framed) links get
sent to endomorphisms of the trivial representation, which are just rational functions. Certain
instances of these two constructions give rise to essentially the same invariants, but when one
carefully matches them there is a minus sign that seems out of place. We will discuss exactly
how the constructions match up in the case of the Jones polynomial, and where the minus
sign comes from.
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1. Introduction

These notes are an expanded version of a talk given at the university of Queensland in
Brisbane Australia, on Nov. 13, 2008. They are largely expository, and most of the content
can be found in, for instance, [O, Appendix H]. The main difference here is that we use
the non-standard ribbon element introduced in [ST]. We feel this makes the correspondence
between the two constructions somewhat more transparent, mainly because it allows us to
introduce a functor from framed but unoriented links to the category of representations of
Uq(g). In the usual approach, the Kauffman bracket is calculated for unoriented framed links,
while the quantum group invariants must be calculated for oriented framed links.
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The non-standard ribbon we use exists in many cases beyond Uq(sl2). For instance, a very
similar discussion to the following can be used to relate the type C quantum group knot
invariants with a specialization of the Kauffman polynomial.

2. The Kauffman bracket and Uq(sl2) knot invariants

The following, up to a possible change in the variable q, is the well known construction of
the Kauffman bracket.

Definition 1. Take a link diagram (i.e. A link drawn as a curve is the plan with under and
over crossings). Simplify it using the following relations until the result is a polynomial in q
and q−1. That polynomial, denoted by K(L), is the Kauffman bracket of the link diagram.

(i)

@@

@@�
�
�
��

= q1/2 + q−1/2 � �� �

(ii) &%
'$

= −q − q−1

(iii) If two tangle diagrams are disjoint, their Kauffman brackets multiply.

The Kauffman bracket is not an isotopy invariant of links, but is instead an invariant of
framed links (that is, links tied out of orientable flat ribbons), where the framing is in the
direction of the page. One can allow twists of the framing to occur in the diagram if one
introduces the following extra relation (here both sides represent a single framed string):

= −q3/2

regardless of orientation (note that the direction of the twist does matter).

Theorem 2. (see [O, Theorem 1.10]) The Kauffman bracket as calculated using the above
three relations is an invariant of framed links. �

Having to work with famed links instead of ordinary links is somewhat annoying. This is
usually fixed as follows.

Definition 3. An over-crossing is a crossing of the form
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An undercrossing is a crossing of the form
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A positive full twist is a twist of the form

6

The writhe of a link diagram L, denoted by w(L), is defined to the the number of over
crossings minus the number of under crossings plus the number of positive full twists.

Comment 4. Here we have drawn every component with it’s framing. Usually, unless we
need to explicitly show a twist, we will just draw lines, and use the convention that these
stand for ribbons lies flat on the page. This is often referred to as the “blackboard framing”.

The following is one of the more fundamental theorems in knot theory. It says that the
Jones polynomial is an invariant of framed links.

Theorem 5. (see [O, Theorem 1.5]) Let L be any link. Then the Jones polynomial,

(1) J(L) := (−q3/2)w(L)K(L),

is independent of the framing. Hence J(L) is an isotopy invariant of oriented (but not framed)
links.

This is normally stated in terms of link diagrams, not framed links. The result for framed
links follows by noticing that the positive full twist from Definition 3 is isotopic to

with the black board framing.

Comment 6. It is straightforward to see that overcrossings are sent to overcrossings if both
orientations are reversed. So, the orientations only affect the Jones polynomial if there are at
least 2 components.

3. The quantum group construction of the Jones polynomial

3.1. The quantum group Uq(sl2) and it’s representations. Uq(sl2) is an infinite dimen-
sional algebra that is related to the Lie-algebra sl2 of 2× 2 matrices with trace zero. It is the
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algebra over the field of rational functions C(q) generated by E,F,K and K−1 subject to the
relations

(2) KK−1 = 1

(3) KEK−1 = q2E

(4) KFK−1 = q−2F

(5) EF − FE =
K −K−1

q − q−1
.

It has a finite dimensional representation Vn for each integer n which we now describe. Intro-
duce the quantum integers

(6) [n] :=
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+1.

Then Vn is the n+1-dimensional with basis vn, vn−2, · · · , v−n+2, v−n, where the action of E,F
and K are given by

E(v−n+2j) =

{
[j + 1]v−n+2j+2 if 0 ≤ j < n

0 if j = n.
(7)

F (vn−2j) =

{
[j + 1]vn−2j−2 if 0 ≤ j < n

0 if j = n.
(8)

K(vk) = qkvk.(9)

This can be expressed by the following diagram:

t t t t t t. . .- - - - - -
� � � � � �

1 [2] [3] [n− 2] [n− 1] [n]

[n] [n− 1] [n− 2] [3] [2] 1

qn qn−2 qn−4 q−n+4 q−n+2 q−n

F :

E :

K :

We briefly discuss more structure on this category of representations. There is a tensor
product on representations of Uq(sl2), where the action on a⊗ b ∈ A⊗B is given by

E(a⊗ b) = Ea⊗Kb+ 1⊗ Eb(10)

F (a⊗ b) = Fa⊗ b+K−1 ⊗ Fb(11)

K(a⊗ b) = Ka⊗Kb.(12)

For each pair of representations A and B, A ⊗ B is always isomorphic to B ⊗ A. For all
A,B, there is a chosen isomorphism

(13) σbr
A,B : A⊗B → B ⊗A.

This is called the braiding, and has a standard (but at times unenlightening) definition, which
can be found in, for example [CP]. We omit this because Theorem 24 below gives an alternative
definition which we find more appealing. Here we only ever apply the braiding to the standard
2-dimensional representation of Uq(sl2), so we can use the following:
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Definition 7. Let V be the 2 dimensional representation of Uq(sl2). Use the standard basis
{v1 ⊗ v1, v−1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v−1} for V ⊗ V . Then σbr : V ⊗ V → V ⊗ V is given by the
matrix

σbr = q−1/2


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q


There is a standard action of Uq(sl2) on the dual vector space to Vn. This is defined using

the “antipode” S. This is the algebra anti-automorphism defined on generators by:

(14)


S(E) = −EK−1

S(F ) = −KF
S(K) = K−1

Then Uq(sl(2) acts on V ∗
n by: For v̂ ∈ V ∗

n and X ∈ Uq(g), X(v̂) is the element of V ∗
n defined

by

(15) Xv̂(w) := v̂(S(X)w),

for all w ∈ Vn.
It turns out that Vn is always isomorphic to V ∗

n . The following is one possible isomorphism
for the case of the standard (two dimensional) representation V = V1.

Example 8. An isomorphism between the standard representation of Uq(sl2) and it’s dual.
Let v1, v−1 be the basis for V . For i = ±1, let v̂i be the element of V ∗ defined by

(16) v̂i(vj) = δi,j .

Calculating using the above definition, the action of Uq(sl2) on V ∗ is given by

(17) v̂−1 v̂1
-

�

−q−1

−q

where the top arrow shows the action of F and the bottom arrow shows the action of E.

This turn out to be isomorphic to V itself. It will be useful for us to choose an isomorphism
(this choice is arbitrary, but we need to make one).

Definition 9. Let f : V → V ∗ be the map

(18)

{
f(v1) = v̂−1

f(v−1) = −q−1v̂1

One can easily check that f is an isomorphism.

Comment 10. If one sets q = 1, the category of representations described above is exactly the
category of finite dimensional representations of the usual Lie algebra sl2, where one identifies
E and F with generators of sl2 by

E ↔
(

0 1
0 0

)
, F ↔

(
0 0
1 0

)
,

K −K−1

q − q−1
↔
(

1 0
0 −1

)
.(19)
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For us, this will be sufficient justification for thinking of Uq(sl2) as related to ordinary sl2.

Comment 11. Notice that in the above K itself does not correspond to anything in sl2, and
acts as the identity at q = 1. Uq(sl2) actually has some other finite dimensional representations
where K does not act as the identity at q = 1. We have restricted to the so called “type 1”
representations. The other representations rarely appear in the theory.

3.2. Ribbon elements and quantum traces. The following constructions can be found in
[CP, Chapter 4]. The main difference here is that we work with two possible ribbon elements
throughout. Each satisfies the definition of a ribbon element in [CP]. For this reason we also
have two different quantum traces, and two different co-quantum traces.

Definition 12. The standard ribbon element Qs is a central element in a certain completion
of Uq(sl2), defined by the fact that it acts on each Vn as multiplication by the scalar q−n2/2−n.
The “half-twist” ribbon element Qt acts on Vn as multiplication by the scalar (−1)nq−n2/2−n.

Definition 13. Let gs be the operators which acts on vn−2j ∈ Vn as multiplication by q(n−2j)/2.
This is the standard group-like element used in defining quantum traces.

Let gt be the operators which acts on vn−2j ∈ Vn as multiplication by (−1)nq(n−2j)/2. This
is a twisted group-like element which can also be used to define quantum traces.

Comment 14. The group like element is related to the ribbon element by

(20) g = v−1µ(S ⊗ Id)R21,

where µ means multiplication and R21 is R applied to the tensor products in the reverse order.
This fits into the standard theory of ribbon Hopf algebras as described in, for example, [CP,
Chapter 4.2C].

Definition 15. (see [CP, Definition 4.29] and [O, Section 4.2]) Define the following maps:

(i) ev is the evaluation map V ∗ ⊗ V → F .
(ii) qtrQs is the standard quantum trace map V ⊗ V ∗ → F defined by, for φ ∈ End(V ) =

V ⊗ V ∗, qtrQs(φ) = trace(φ ◦ gs).
(iii) qtrQt is the “half-twist” quantum trace map V ⊗V ∗ → F defined by, for φ ∈ End(V ) =

V ⊗ V ∗, qtrQt(φ) = trace(φ ◦ gt).
(iv) coev is the coevaluation map F → V ⊗ V ∗ defined by coev(1) = Id, where Id is the

identity map in End(V ) = V ⊗ V ∗.
(v) coqtrQs is the standard quantum cotrace map F → V ∗ ⊗ V defined by coqtrQs(1) =

(gs ⊗ 1) ◦ Flip ◦ coev(1).
(vi) coqtrQt is the “half-twist” quantum cotrace map F → V ∗⊗V defined by coqtrQt(1) =

(gt ⊗ 1) ◦ Flip ◦ coev(1).

Comment 16. It is not approri clear that these maps are all morphisms of Uq(sl2) represen-
tations, since Flip is not generally a morphism. It turns out that the compositions used above
are all morphisms. See [ST] for details.

Comment 17. In order to do calculations, it is often usefull to express these maps is coordi-
nates. So, fix f ∈ V ∗, v ∈ V , and {ei}, {ei} be dual basis for V ∗ and V . Then the maps qtrQ
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and coqtrQ are given by

qtrQ(v ⊗ f) = f(gv)(21)

coqtrQ(1) =
∑

i

ei ⊗ g−1ei.(22)

One can choose Q to be either Qs or Qt, and then one must use the grouplike element gs or
gt accordingly.

3.3. A topological category of ribbons with half-twists. The construction of the Uq(sl2)
quantum group knot invariants is possible because there is a functor from a certain topological
category to the category of representations Uq(sl2). We now describe the relevant category,
and this functor.

Definition 18. RIBBON (topological ribbons) is the category defined by:
• Objects in RIBBON consist of a finite number of disjoint closed intervals on the real line

each directed either up or down. These objects are considered up to isotopy of the real line.
For example:

.

• A morphism between two objects A,B ∈ RIBBON consist of ‘tangles of orientable,
directed ribbons’ in R2 × I, whose ‘loose ends” are exactly (A, 0, 0) ∪ (B, 0, 1) ⊂ R × R × I,
such that the direction (up or down) of each interval in A∪B agrees with the direction of the
ribbon whose end lies at that interval. These are considered up to isotopy.
• Composition of two morphisms is given by stacking them on top of each other, and them

shrinking the vertical axis by a factor of two. Note that we read our diagrams bottom to top.

3.4. The functor. The following is the main ingredient to the quantum group construction
of knot invariants. It holds in much greater generality than stated here, which allows for the
construction of a great many invariants.

Theorem 19. (see [CP, Theorem 5.3.2]) Let V be the standard 2 dimensional representation
of Uq(sl2). For each ribbon element Q (here Qs or Qt), there is a unique monoidal functor
FQ from RIBBON to Uq(gl2)-rep such that

(i) FQ( ) = V and FQ( ) = V ∗,

(ii)

FQ


 = ev, FQ


 = qtrQ,

FQ


 = coev, FQ


 = coqtrQ,
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(iii) FQ


 = Q,

thought of as a morphism from V to V or from V ∗ to V ∗, depending on the orientation.

(iv) FQ

  = Flip ◦R

as a morphism from the tensor product of the bottom two objects to the tensor product
of the top two objects, regardless of orientation.

Let L be a link. The image of L under the above functor is a morphism from C(q) to C(q)
in rep− Uq(sl2), which is just a rational function in q. We denote this by

(23) IQ(L) := FQ(L), considered as a function of q.

In fact, IQ(L) is always a polynomial in q1/2 and q−1/2.

Theorem 20. (see [O, Theorem 4.19] ) For any framed link L, we have IQs(L) = (−1)n(L)〈L〉,
where n(L) is some integer depending on L.

The minus sign in Theorem 20 is clearly annoying (and is the reason for the title of these
notes). Theorem 22 below shows how this annoyance is removed by using Qt in place of Qs.

Comment 21. Given a diagram of L, n(L) is the number of right going cups, plus the number
of right going caps, plus the number of full (360 degree) twists of the framing. Alternatively,
as is done in [O], n(L) can be defined in terms of the number of components of L and the
“framing number” of each component.

4. Matching the two constructions, in the case when the ribbon element is Qt

We will now show how the skein relations used in defining the Kauffman bracket can be
explained using the quantum group formulation. This section is similar to [O, Appendix H],
although the presentation is simplified by use the non-standard ribbon element Qt throughout.

The Kauffman bracket is calculated for unoriented link diagrams, so we will need an inter-
pretation of an unoriented link diagram as a morphism in the category of Uq(g) representations.
For this, all the strands will be interpreted as the two dimensional representation V (as op-
posed to V ∗). We will then interpret each feature in the knot diagram as a morphism between
the appropriate tensor powers of V For instance,� �
should be interpreted as a morphism from V ⊗ V to C. This is as opposed to oriented caps,
which represent morphisms V ∗⊗V → C or V ⊗V ∗ → C. To do this, notice that in the case we
are considering, V is isomorphic to V ∗. Choose, once and for all, an isomorphism f : V → V ∗

(for instance, one can use the isomorphism from Definition 9). Associate morphisms of Uq(sl2)
representations to unoriented caps and cups by:

(24)
� �

−→ ev ◦ (f ⊗ Id) = qtrQt ◦ (Id⊗ f) : V ⊗ V → C(q)
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(25) � �−→ (Id⊗ f−1) ◦ coev = (f−1 ⊗ Id) ◦ coqtrQt : C(q)→ V ⊗ V .

In both of these equations, equality of the two expressions on the right can easily be verified.
Note that quantum trace and co-quantum trace in fact depend on a choice of ribbon element,
and the subscript indicates that we are using the ribbon element Qt. If one used Qs instead
of Qt, the expressions are off by a minus sign, and this construction does not work.

By direct calculation, one then sees that

(26) &%
'$

−→ multiplication by −q − q−1.

As is standard, we will represent the braiding diagrammatically by a crossing:

(27)
�
�
�
��@@

@@

= σbr

One can easily check, again by direct computation, that:

(28) σbr = q1/2Id+ q−1/2(Id⊗ f−1) ◦ coev ◦ qtrQt ◦ (Id⊗ f) : V ⊗ V → V ⊗ V.
Expressing this equation diagrammatically, using the above notation, we see that:

(29)
�
�
�
��@@

@@

= q1/2 + q−1/2 � �� �
But this is exactly the skein relation used to calculate the Kauffman bracket! Along with
Equation 26, this implies that FQt of an unoriented link gives the Kauffman bracket. From
this it of course follows that one obtains an invariant of unoriented framed links, which we
will call Iunoriented(L). We now prove that this in in fact the same invariant as IQt(L) for any
orientation of L:

Theorem 22. Let L be a framed link. Then IQt(L) is independent of the chosen orientation.
Furthermore, it agrees with Iunoriented(L), and hence also with the Kauffman bracket

Proof. Take any orientations of L. Add f ◦ f−1 on every component that is oriented down.
This clearly doesn’t change the morphism. By the naturality of the braiding σbr,

(30) (1⊗ f)σbr = σbr(f ⊗ 1).

This allows one to pull all the f and f−1 through crossings until they are right next to cups
and caps. But now you are exactly calculating Iunoriented(L). �

5. Another advantage: the half twist

The non-standard ribbon element Qt has a square root, which we will call X−1, that has
an interesting topological interpretation.

Definition 23. Let X act on Vn by Xvn−2j = inqn2/4+n/2v−n+2j , where i is the complex
number i.
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Then one can easily check that X−2 = Qt. Thus one is led to try and extend the definition
of the functor FQt from Theorem 19 in such a way that

(31) FQt

  = X−1.

The following gives further indications that such a generalized functor should exist. It is a
specialization of a result of Kirilov-Reshetikhin[KR, Theorem 3] and Levendorskii-Soibelman,
[LS, Theorem 1]. See [KT, Definition 4.6 and Corollary 8.4] for this exact statement. Since
we have not defined the braiding σbr, one could take this as the definition.

Theorem 24. σbr = (X−1 ⊗X−1) ◦ Flip ◦∆(X).

This can be interpreted by the following isotopy:

'

X should correspond to twisting the ribbon 180 degrees, and Flip ◦∆(X) to twisting both at
once by 180 degree, as on the bottom of the left side above.

This extended functor is defined precisely in [ST], resulting in a functor from a larger
category where ribbons are allowed to twist by 180 degrees, not just by 360 degrees (although
Mobius bands are still not allowed). It is only possible to extend FQt , not FQs . One advantage
of this extension over the original functor is that, since both σbr and Qt are constructed in
term of the “half-twist” X, there is in some sense one less elementary feature to consider.
Morphisms in the resulting category are as in Figure 1 (ignoring the letters). Notice that
elementary objects come in both shaded and unshaded versions.
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Figure 1. A morphism in the topological category of ribbons with half twists


