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Abstract. Building on our recent work in rank two, we use quiver varieties

to give a combinatorial upper bound on dimensions of certain imaginary root

spaces for symmetric rank 3 Kac-Moody algebras. We describe an explicit
method for extracting combinatorics when the Dynkin diagram is bipartite, so

two of the nodes are not connected. As in rank two we believe these bounds

are quite tight, and we give computational evidence to this effect, although
there is more error in rank 3 than in rank 2.

1. Introduction

In [Tin21], we developed a general method for studying root multiplicities of
symmetrizable Kac-Moody algebras using quiver varieties. This gives a framework
for finding combinatorial upper bounds on the multiplicities, and we conjectured
that the resulting bounds, at least in some cases, are quite tight. While the con-
struction is general, we only translated it to combinatorics in rank two. There the
upper bound consisted of the number of Dyck paths satisfying various conditions.

Here we develop explicit combinatorics using the same method in certain rank
three cases. Specifically, we consider a Kac-Moody algebra g with Dynkin diagram

. . .

2 1 3

s t

meaning there are s edges on the left and t edges on the right. Our main result is
the following:

Theorem 1.1. For any imaginary root β = aα1 + bα2 + cα3 with gcd(a, b, c) = 1,
the root multiplicity mβ is bounded above by the number of words of the form

(1.2) 1a12b13c11a22b23c2 · · · ,

where the total number of 1s is a, the number of 2s is b, the number of 3s is c, and,

(1) For each i, ai 6= 0 and bi or ci is also non-zero.
(2) Draw a path in the plane by drawing each 1 as a vertical line of length

1, each 2 as a horizontal line of length s, and each 3 as a horizontal line
of length t. The result is a rational Dyck path. That is, a straight line
connecting the beginning and end of the path stays weakly below the path.

(3) If a prefix 1a12b13c1 · · · 1ak2bk3ck corresponds to a point where the Dyck path

touches the diagonal, then
b1 + · · ·+ bk
c1 + · · ·+ ck

≥ b

c
. Equivalently, if you deform

the path to have each 2 correspond to an edge of length s− ε, the resulting
path still stays above its diagonal.

(4) For each i ≥ 1,
bi
ai
≤ s and

ci
ai
≤ t.
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For each i ≥ 1, let nbi = min{bi, sai+1−bi+1} and nci = min{ci, tai+1−
ci+1}.

(5) ai+1 ≤ snbi + tnc −max{s−1nb, t
−1nci}.

(6)
ai+1

snbi + tnci
≤ 1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Similar methods should work for any symmetric Kac-Moody algebra whose
Dynkin diagram is bipartite, with the combinatorics being most similar when the
Dynkin diagram is a star. The method from [Tin21] is even more general, but as
the diagram gets more complex it is harder to describe things combinatorially.

Unlike in the rank two case from [Tin21], we don’t believe that Theorem 1.1
gives the complete list of “local” conditions on the path, so the upper bound will
diverge exponentially from the correct answer. Nonetheless, we give evidence that
the bounds are meaningful. We also discuss ways to tighten the bounds, although
we don’t believe that giving the full list of conditions is feasible.

Root multiplicities have been studied quite extensively, see [CFL14] for a sur-
vey. They can be calculated exactly, see [BM79, Pet83], although the formulae are
complicated. Special cases have been further investigated and combinatorialized in
[FF83, KLL17, KM95]. But open questions remain. See e.g. [CFL14, Open Prob-
lems 2 and 3] and Frenkel’s conjectural upper bound for hyperbolic cases [Fre85].
We hope our work sheds some light on the situation, particularly on asymptotics.

2. Background

2.1. Kac-Moody algebras and B(−∞). We consider the Kac-Moody algebra g
associated to a symmetric Cartan matrix A = (aij) with index set I, see [Kac90].
The Lie algebra g is graded by the root lattice Q, which is the Z-span of the simple
roots αi for i ∈ I. By definition a non-zero β ∈ Q is a root if dim gβ 6= 0, in which
case mβ := dim gβ is called the root multiplicity. All roots are either positive,
meaning they are Z≥0 linear combinations of the αi, or negative, meaning the
negatives of these. Let ∆ denote the set of roots and ∆+ the positive roots.

There is an inner product on Q defined by, for simple roots αi, αj , 〈αi, αj〉 = aij .
All roots β have the property that either 〈β, β〉 = 2, in which case β is called a
real root, or 〈β, β〉 ≤ 0, in which case β is called an imaginary root. The refection
corresponding to each αi acts on weight space by

si(ν) = ν − 〈αi, ν〉αi.

This has various important properties, including:

• It preserves the inner product.
• It preserves root multiplicities.
• It preserves the set of positive imaginary roots, meaning it acts as a per-

mutation on this set.

2.2. The crystal B(−∞). We don’t work directly with g here, but instead with
the crystal B(−∞). This is a combinatorial object related most closely not to g,
but to its universal enveloping algebra U(g). As a vector space,

U(g) = U−(g)⊗ U0(g)⊗ U+(g),
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where U−, U0, U+ are the subalgebras generated by the negative root spaces, the
Cartan subalgebra, and the positive root spaces, respectively. The graded dimen-
sion of U+ is

dimU+ =
∏
β∈∆+

(
1

1− eβ

)mβ
.

That is, the dimension of the γ-weight space of U+(g) is the number of ways to
write γ as a sum of positive roots, taking into account multiplicities. This is also
called the Kostant partition function of γ.

The crystal B(−∞) is a set along with operators ei, fi : B(−∞)→ B(−∞)∪{0}
for each i ∈ I, which satisfy various axioms. There is a weight function wt :
B(−∞)→ Q, and the number of elements of a given weight γ is the dimension of
the γ weight space in U+(g). See [Kas95] or [HK02] (which consider B(∞), the
Cartan involution of B(−∞)). Here we use the geometric realization of B(−∞)
from [KS97], which is explained below.

2.3. Quiver varieties. Fix a graph G with vertex set I and edge set E. Let A be
the set of arrows, so there are two arrows for each edge e ∈ E, one pointing in each
direction. For each arrow a, let s(a) be the source and t(a) be the target, meaning
a points from s(a) to t(a).

Definition 2.1. The path algebra C[G] is the C-algebra with basis consisting of
all paths in G (sequences of arrows ak · · · a1 with t(ai) = s(ai+1)), along with the
lazy paths ei at each vertex) and with multiplication given by

(bk · · · b1)(aj · · · a1) =

{
bk · · · b1aj · · · a1 t(aj) = s(b1)

0 otherwise.

Choose a subset Ω of A where each edge appears in exactly one direction (sometimes
called an orientation of the graph) and define ε(a) = 1 if a ∈ Ω and −1 otherwise.
For a ∈ A, let ā denote the reverse arrow.

Definition 2.2. The preprojective algebra Λ is the quotient of C[G] by the ideal
generated by

ε =
∑
a∈A

ε(a)āa.

Definition 2.3. For any I-graded vector space V = ⊕IVi, let Λ(V ) be the variety
of actions of Λ on V where the lazy path at i acts as projection onto Vi, and which
are nilpotent in the sense that all paths of length at least dimV act as 0.

A representation of C[G] is determined by a homomorphism for each arrow, so
can be described as

(xa)a∈A ∈ ⊕AHom(Vs(a), Vt(a)).

Λ(V ) is a sub-variety of this space. Up to isomorphism it depends only on the
dimension vector v = (vi)i∈I , where vi = dimVi.

Associate to G a symmetric Cartan matrix whose index set is the set of vertices,
the diagonal entries are 2, and other entires are defined by setting −aij to be
the number of edges connecting i and j. We identify a dimension vector v with
γ =

∑
i viαi ∈ P , and sometimes denote Λ(V ) by Λ(γ). Denote the set of irreducible

components of Λ(γ) by IrrΛ(γ). The following is due to Kashiwara and Saito
[KS97], so also [NT18, Proposition 3.14].
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Theorem 2.4. The crystal B(−∞) is naturally indexed by
∐

IrrΛ(γ). The oper-
ation fmax

i which applies the crystal operator fi as many times as possible acts on
X ∈ IrrΛ(v) as follows: Fix T ∈ X. Let Soci(T ) be the intersection of the socle of
T with Vi and set γ′ = γ − dim Soci(T )αi. Generically T/Soci(T ) is isomorphic to
a point in a unique Y ∈ IrrΛ(γ′), and fmax

i X = Y .

Example 2.5. The case s = 2, t = 1 is particularly important here. That is, the
Dynkin diagram

. . .

2 1 3

a1

a2

a3

with two edges on the left, and one on the right. Orient all the edges to point away
from the center node, and call the oriented arrows a1, a2, a3. A representation of
C[G] on V0 ⊕ V1 ⊕ V2 consists of 6 maps:

xa1 , xa2 : V1 → V2, xa3 : V1 → V3, xā1 , xā2 : V2 → V1, xā3 : V3 → V1.

Λ(v) is the sub-variety cut out by the condition that all paths of length greater
than dimV0 + dimV1 + dimV2 act as 0, and the equations

ā1a1 + ā2a2 + ā3a3 = 0, a1ā1 + a2ā2 = 0, a3ā3 = 0,

where these are equations in End(V1),End(V2),End(V3) respectively.

2.4. Stability conditions. We loosely follow [BKT14], drawing on notation from
[TW16] as well. See also [Tin21].

Define a charge c to be a linear function c : P → C such that c(αi) is in the
upper half plane for all simple roots αi. For a fixed charge c, each representation
V of Λ has a unique filtration

∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

where the sub-quotients Qi = Vi/Vi−1 satisfy

(HN1) Qi has no submodule S with arg(c(dimS)) < arg(c(dimQi)),
(HN2) arg(c(dimQ1)) < arg(c(dimQ2)) < · · · < arg(c(dimQk)).

Here arg(z) is the angle formed by z, 0 and 1 in the complex plane. We call this
the HN filtration since it is a special case of a Harder-Narasimhan filtration as in
e.g. [Rud97].

Fix a stability condition c so that, for any root β, if arg c(α) = arg c(β) then
β and α are parallel. The following can be extracted from [BKT14], see [Tin21,
Theorem 3.3] for the exact statement.

Theorem 2.6. For any γ ∈ Q+, the number of stable irreducible components of
Λ(γ) is the sum over all ways of writing γ = β1 + · · ·+βn as a sum of parallel roots
βk of the product mβ1 · · ·mβn of the corresponding root multiplicities. In particular,
if γ is not parallel to any smaller weight, it is exactly mγ .

2.5. String data. The following was first studied by Kashiwara [Kas95, §8.2] and
was further developed by Littelmann [Lit98]. Choose a sequence i1, i2, i3 . . . of nodes
in the Dynkin diagram with each appearing infinitely many times. The string data
(a1, a2, . . .) of b ∈ B(−∞) is

a1 = max{n : fni1b 6= 0},
a2 = max{n : fni2f

a1
i1
b 6= 0},
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and so on. Record this as a word in the letters I consisting of a1 i1’s, followed by
a2 i2’s, and so on. Sometimes we write this as

ia11 ia22 · · · i
ak
k .

The string data uniquely determines an element b ∈ B(−∞).
Indexing B(−∞) by tIrrΛ(v), Theorem 2.4 shows that the string data of X ∈

IrrΛ(v) gives the dimensions of the graded socle filtration of a generic T ∈ X:

a1 = dim Hom(Ci1 , T ),

a2 = dim Hom(Ci2 , T/i1socle),

and so on, where Ci is the one dimensional simple module in degree i.

3. Rank three and proof of Theorem 1.1

As in the introduction, consider the case where the Dynkin diagram is

. . .

2 1 3

s t

The corresponding Cartan matrix is 2 −s −t
−s 2 0
−t 0 2

 .

Consider the charge defined by

c(α1) = −1 + i, c(α2) = s+ si, c(α3) = t− ε+ ti

where ε is infinitesmal. Then arg(c(a1α1+b1α2+c1α3)) < arg(c(a2α1+b2α2+c2α3)
exactly if {

sb1+tc1
a1

> sb2+tc2
a2

, or
sb1+tc1
a1

= sb2+tc2
a2

and b1
c1
< b2

c2
.

If β = aαb + qα2 + cα3 and gcd(a, b, c) = 1, then Theorem 2.6 shows that mβ is the
number of stable irreducible components of Λ(β).

Remark 3.1. We could use any charge. This one is convenient because for technical
reasons it gives slightly simpler conditions. With a different charge, the analogue
of Theorem 1.1 requires some extra special cases.

Fix T ∈ Λ(aα1 + bα2 + cα3). Take string data as in §2.5 using the sequence
1, 2, 3, 1, 2, 3, · · · . It is convenient to use specialized notation, where the string data
is a1, b1, c1, a2, b2, c2, · · · , so that, for T generic in X,

a1 = dim Hom(C1, T )

b1 = dim Hom(C2, T1), where T1 = T/1− socle

c1 = dim Hom(C3, T2), where T2 = T1/2− socle

a2 = dim Hom(C1, T3), where T3 = T2/3− socle,

and so on. For each word, create a path in R2 where a 1 corresponds to a step up,
a 2 to s steps to the right, and a 3 to t steps to the right.



6 PATRICK CHAN AND PETER TINGLEY

Lemma 3.2. If T ∈ Λ(aα1 + bα2 + cα3) is a stable module with string data
a1, b1, c1, a2..., then this is a rational Dyck path. Furthermore, for any k where
the path touches the diagonal, b1+···+bk

c1+···+ck ≥
b
c . That is, Theorem 1.1 parts (2) and

(3) hold.

Proof. Each left-prefix of the sequence corresponds to a sub-model of T , and if the
conditions do not hold then this gives a submodule that violates stability.

Example 3.3.
11223122312

becomes the path

which is not a rational Dyck path because it dips below the diagonal at (10, 3).

Example 3.4. Both 112211233 and 112331122 correspond to the Dyck path

But the submodule of 112331122 corresponding to 11233 still fails stability because
it touches the diagonal and has a lower ratio of 2s to 3s than the whole word.
112211233 does correspond to a stable component.

We now need a little more notation. If a module M has string data a1b1c1a2b2...,
then we can choose a decomposition

(3.5) M = A1 ⊕B1 ⊕ C1 ⊕ · · · ⊕Ak ⊕Bk ⊕ Ck
which is compatible with the socle filtration in the sense that

• The 1-socle is A1,
• The 2 socle of M/A1 is B1, That is, the natural map from B1 to the 2-socle

of the quotient is an isomorphism.
• The 3 socle of M/(A1 ⊕B1) is C1,
• The 1 socle of M/(A1 ⊕B1 ⊕ C1) is A2,

and so on. Then the representation induces various maps for each i:

1x2 =
⊕

s(a)=2,t(a)=1

xa : Bi → Asi−1, 2x1 =
⊕

s(a)=1,t(a)=2

xa : Ai → Bsi−1,

1x3 =
⊕

s(a)=3,t(a)=1

xa : Ci → Asi−1, 3x1 =
⊕

s(a)=1,t(a)=3

xa : Ai → Cti−1,

1x̄2 =
∑

s(a)=2,t(a)=1

xa : Bsi → Ai−1, 2x̄1 =
∑

s(a)=1,t(a)=2

xa : Asi → Bi−1,

1x̄3 =
∑

s(a)=3,t(a)=1

xa : Csi → Ai−1, 3x̄1 =
∑

s(a)=1,t(a)=3

xa : Ati → Ci−1.
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These are actually families of maps depending on i, and we put a superscript of i
on the maps if we need to specify which we mean, so a superscript of i means that
the domain of the map is Ai, Bi or Ci. But in most contexts that is clear and we
suppress the notation. The preprojective relations imply that

2x̄1 ◦ 1x2 = 0, 1x̄2 ◦ 2x1 + 1x̄3 ◦ 3x1 = 0, 3x̄1 ◦ 1x3 = 0,

and this holds with any superscript i.
Below we repeatedly use the following facts that a generic module in a stable

irreducible component is stable and so, if one can show that there are no stable
modules with a given string data, there can be no stable irreducible component
with that data.

fact that any sub-word of a valid string data must be a valid string data.

Lemma 3.6. There is no stable Λ-module whose string data has bi > sai or ci > tai
for any i. In particular, Theorem 1.1(4) holds.

Proof of Lemma 3.6. Assume a module M has this string data, and bi > sai. Then
by dimension count 1x2 : Bi → A⊕si must have a kernel. If i > 1 this contradicts
the definition of the socle filtration, and if i = 1 it contradicts stability.

It follows that Theorem 1.1(4) holds for any stable component since it holds for
any stable module.

Lemma 3.7. Assume a Λ module has string data a1, b1, c1, · · · bk, ck and is stable.
Fix i, and let nbi = min{bi, sai+1 − bi+1}, nci = min{ci, tai+1 − ci+1}. Then

ai+1 ≤ snb + tnc −max{s−1nb, t
−1nc}.

In particular, Theorem 1.1(5) holds.

Proof. By the definition of the socle filtration, 1x2 : Bi+1 → A⊕si+1 is injective. Also,
by the preprojective relations,

2x̄
i
1 ◦ 1x

i+1
2 : Bi+1 → Bi

is the zero map. Hence

dim im 2x̄1 ≤ dimA⊕si+1 − dimBi+1 = sai+1 − bi+1.

Certainly
dim im 2x̄1 ≤ dimBi = bi.

Putting this together,
dim im 2x̄

i
1 ≤ nbi.

Similarly, dim im 2x̄
i
3 ≤ nci.

Let Ib = im 2x̄1 ⊂ Bi, Ic = im 3x̄1 ⊂ Ci, Again using the definition of a socle
filtration,

2x
i
1 ⊕ 3x

i
1 : Ai+1 → I⊕sb ⊕ I

⊕t
c

is injective, so the dimension of its image is ai+1.
Now, 1x2|Ib is injective, so its image has dimension nbi. Recalling that

1x2|Ib =
⊕

a:s(a)=2,t(a)=1

xa,

at least one of these a must have dim imxa|Ib > s−1nbi. This in turn implies that
dim im 1x̄

i
2|Isb ≥ s

−1nbi. Similarly, dim im 1x̄
i
3|Itc ≥ t

−1nci. So,

dim im 1x̄
i
2 + 1x̄

i
3|Isb+Itc

≥ max{s−1nbi + t−1nci}.
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Using the preprojective relation again,

(1x̄
i
2 + 1x̄

i
3) ◦ (2x

i
1 ⊕ 3x

i
1) = 0.

Hence

ai+1 = dim im(2x
i
1⊕3x

i
1) ≤ dim ker(1x̄

i
2+1x̄

i
3)|Isb+Itc

≤ snbi+tnci−max{s−1nbi+t
−1nci}.

Again, this implies the statement on components.

Lemma 3.8. Fix γ = aα1 + bα2 + cα3 with a, b, c ≥ 0.

• Assume a
sb+tc <

1
2 −
√

(s2+t2)2−4(s2+t2)

2(s2+t2) , and that s2s3β = aα1 + b′α2 + c′α3

has b′, c′ ≥ 0. Then a
sb′+tc′ >

1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) .

• Assume a
sb+tc >

1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) and that s1β = a′α1 + bα2 + cα3

has a′ ≥ 0. Then a
sb′+tc′ <

1
2 −
√

(s2+t2)2−4(s2+t2)

2(s2+t2) .

Proof. Consider the first case. Then

s2s3β = aα1 + (sa− b)α2 + (ta− c)α3.

a

s(sa− b) + t(ta− c)
=

a

(s2 + t2)a− (sb+ tc)

=
1

s2 + t2 − sb+tc
a

≥ 1

s2 + t2 − 1

1
2−
√

(s2+t2)2−4(s2+t2)

2(s2+t2)

=
1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
,

where the last step requires some simplification. The second case is similar.

Lemma 3.9. For any imaginary root aα1 + bα2 + cα3,

1

2
−
√

(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
<

a

sb+ tc
<

1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Proof. Proceed by induction on a+sb+tc, showing that no β violating the condition
is imaginary. The base case is trivial, since if a+sb+ tc = 1, there are no imaginary
roots. So, fix β with a + sb + tc > 1. Then s2s3β = aα1 + b′α2 + c′α3 has
b′, c′ ≥ 0, since reflection preserves the set of positive imaginary roots. If a

sb+tc <

1
2 −
√

(s2+t2)2−4(s2+t2)

2(s2+t2) , then, by Lemma 3.8, s2s3β = aα1 + b′α2 + c′α3 satisfies

a

sb′ + tc′
>

1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

This certainly also implies a+ sb′ + tc′ < a+ sb+ tc. So by induction s2s3β is not
an imaginary root, and hence neither is β. The other case is similar.

Lemma 3.10. Fix a module M , with the decomposition above.
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• Assume that, for some i, Ai⊕Bi⊕Ci has a submodule of dimension a′, b′, c′

with a′

sb′+tc′ <
1
2 −
√

(s2+t2)2−4(s2+t2)

2(s2+t2) . Then Ai ⊕ Bi−1 ⊕ Ci−1 has a sub-

module of dimension a′, b′′, c′′ with a′

sb′′+tc′′ >
1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) .

• Assume that, for some i, Ai ⊕ Bi−1 ⊕ Ci−1 has a submodule of dimension

a′, b′, c′ with a′

sb′+tc′ >
1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) . Then Ai−1⊕Bi−1⊕Ci−1 has

a submodule of dimension a′′, b′, c′ with a′′

sb′+tc′ <
1
2 −
√

(s2+t2)2−4(s2+t2)

2(s2+t2) .

Proof. Consider the first case. By the preprojective relation

2x̄1 ◦ 1x2 = 0.

The map 1x2 is injective, so dim im 2x̄1 ≤ sa′ − b′. Similarly, dim im 3x̄1 ≤ ta′ − c′.
This implies the existance of a submodule of Ai⊕Bi−1⊕Ci−1 of dimension a′, b′′, c′′

with
a′

sb′′ + tc′′
>

a′

s(sa′ − b′) + t(ta′ − c′)
.

This last fraction is the ratio for s2s3(a′α1 + b′α2 + c′α3), so is larger than 1
2 +√

(s2+t2)2−4(s2+t2)

2(s2+t2) by Lemma 3.8.

The other case is similar.

Lemma 3.11. Fix a stable module. For any i and any submodule A′i+1 ⊕B′i ⊕ C ′i
of Ai+1 ⊕Bi ⊕ Ci, with dimA′i+1 = a′i+1,dimB′i = b′i,dimC ′i = c′i,

(3.12)
ai+1

snbi + tnci
≤ 1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

In particular,

(3.13)
ai+1

snbi + tnci
≤ 1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
,

so Theorem 1.1(6) holds.

Proof. Assume there is a sub-module where (3.12) fails for some i. If i = 1, then, by
Lemma 3.10, A1⊕B1⊕C1 has a submodule A′1⊕B′1⊕C ′1 of dimension (a′1, b

′
1, c
′
1)

with
a′1

sb′1 + tc′1
<

1

2
−
√

(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Since aα1 + bα2 + cα3 is imaginary, Lemma 3.9 shows that

a

sb+ tc
>

1

2
−
√

(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Taking reciprocals we see that A′1 ⊕B′1 ⊕ C ′1 violates stability.
If i > 1 then applying Lemma 3.10 twice gives a sub-quotient for a lower i which

violates the same condition, and one proceeds by induction.
To see (3.13), notice that the preprojective relation implies that the image of

2x1 ⊕ 3x1;Ai+1 → Bi ⊕ Ci has dimension at most (nbi, nci), so if this equation is
violated it immediately gives a sub-quotient violating (3.12)

This completes the proof of Theorem 1.1.
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4. Examples

4.1. The case s = 2, t = 1. In this case many root multiplicities can be found in
[Kac90, Chapter 11]. To estimate the multiplicity of β = aα1 +bα2 +cα3, Theorem
1.1 says we should count words in 1,2,3 such that

• The resulting path is a Dyck path.
• If a prefix 1a12b13c1 · · · 1ak2bk3ck corresponds to a point where the Dyck

path touches the diagonal, then
b1 + · · ·+ bk
c1 + · · ·+ ck

>
b

c
.

• bi
ai
≤ 2,

ci
ai
≤ 1

Let nbi = min{bi, 2ai+1 − bi+1}, nci = min{ci, ai+1 − ci+1},
• ai+1 ≤ 2nbi + nci −max{nbi

2
, nci}.

• ai+1

2nbi + nci
≤ 1

2
+

√
5

10
.

Example 4.1. For β = 3α0 + 4α1 + 2α2, six paths satisfy these conditions:
112312123
112123123
111223123
112211233
112311223
111122233

However, the root multiplicity is 5. The word which does not correspond to a valid
stable component is

112311223.
The reason is that the sub-quotient Q corresponding to the sub-string 2311 (shown
in red) has the property that the C2 and C3 together have only the freedom to
map to a single copy of C1 so it implies the existence of a submodule with socle
filtration 123, which violates stability. This path will be elliminated by the refined
conditions in the next section.

Example 4.2. Consider β = 33α1 + 20α2 + 6α3. String data with ai = 33, bi =
20, ci = 6 satisfies all of our conditions. But,

s2s3s1s2s3s1β = 6α1 + 6α2 − α3,

so this should not be allowed as the dimension of a submodule of Bi−1⊕Ci−1⊕Ai.
So, for instance,

11021031011522036133

does not correspond to the socle filtration of any module but appears in our count.
As with all such cases, we could add a condition to rule this out, but one could just
find a more complex example. But, in any case, our ratio condition fails to capture
all cases where

· · · s2s3s1s2s3s1s2s3s1β

results in a negative coefficient. This β has |β|2 = −110, but does not correspond
to an imaginary root. So, this issue here is related to the existence of elements of
the positive root lattice of negative norm which are not imaginary roots.

This particular example would be ruled out by Theorem 5.1 below, although
there are others that would not.
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4.2. The case s = t = 2. . To estimate the multiplicity of β = aα1 + bα2 + cα3,
Theorem 1.1 now says we should count words in 1,2,3 such that

• The resulting path is a Dyck path.
• If a prefix 1a12b13c1 · · · 1ak2bk3ck corresponds to a point where the Dyck

path touches the diagonal, then
b1 + · · ·+ bk
c1 + · · ·+ ck

>
b

c
.

• bi
ai
,
ci
ai
≤ 2

Let nbi = min{bi, 2ai+1 − bi+1}, nci = min{ci, 2ai+1 − ci+1},
• ai+1 ≤ 2nbi + 2nci −max{nbi

2
,
nci
2
}.

• ai+1

2nbi + 2nci
≤ 1

2
+

√
2

4
.

Example 4.3. A word of the form

...112211221112...

does not immediately fail any of the conditions. But, the segment colored red
corresponds to the sub-quotient Q with socle data 22111. By the usual dimension
counts, this implies a submodule with data

...1122122.

Now the 1 in the sub-quotient Q′ indicated in red has no freedom to map to 2s
below, so must be part of the socle. This contradicts the fact that this is a socle
filtration, so no words of this form correspond to stable components. Note that if
the word was of the form

...112311221112...

instead there would have been no problem.

We can of course write down conditions to rule out Example 4.3. But then one
can just find worse examples. For instance:

Example 4.4. Consider now string data of the form

....1?27172717271727182?...

Then the 2718 at the right implies a 1627 then a 2516 and so on down to a 212

subquotient, and then the two has no freedom to map to any 1s, causing a contra-
diction. But

....1?273172717271727182?...

would not have had this problem. So we need to consider many steps in the path
to find the problem.

Example 4.5. Comparing to [Tin21], it seems like the condition on the ratio
should be saying that, for any i, either ai+1 is small compared to nb, nc, or ν =
ai+1α1 + nbα2 + ncα3 pairs negatively with itself. However, this is not quite right.
For example, take ν = 19α1 + 11α2 + α3. Then ||ν||2 = 27. But, the filtration of
the maximal module with this head is

· · · 22932111521391521131119,

which does not imply a problem with the socle filtration. What we really need to
capture is when the sequence · · · s2s3s1s2s3s1s2s3s1 acts on ai+1α1 + nbα2 + ncα3

to eventually give a negative coefficient. This will never happen for imaginary
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roots, but may or may not happen for real roots, or for vectors which are not roots.
Theorem 1.1(6) rules out certain ai+1α1 + nbα2 + ncα3 where the coefficient of α1

must decrease indefinitely each time one applies s2s3s1 until one of the coefficients
becomes negative, but there are other cases.

5. Refined conditions

In [Tin21], two types of conditions were given: [Tin21, Theorem 4.3] gave local
conditions that must be satisfied anywhere on the Dyck path of a stable component,
and [Tin21, Theorem 4.9] gave extra conditions that must be satisfied near the
beginning of the path, and at places where it is near the diagonal. The previous
sections here gave conditions analogous to [Tin21, Theorem 4.3]. We now give some
conditions analogous to [Tin21, Theorem 4.9].

Theorem 5.1. Fix β = aα1 + bα2 + cα3 and a path 1a12b13c1 · · · 1ak2bk3ck with
a1 + · · ·+ ak = a, b1 + · · ·+ bk = b, c1 + · · ·+ ck = c. For any x ≤ y < k, let

• naI = ax+1 + ax+2 + · · ·+ ay+1

• nbI = min(bx + bx+1 + · · ·+ by, snaI − (bx+1 + bx+2 + · · ·+ by+1))
• ncI = min(cx + cx+1 + · · ·+ cy, tnaI − (cx+1 + cx+2 + · · ·+ cy+1))

• A = a1 + a2 + · · ·+ ax−1 + snbI + tncI − naI
• B = b1 + b2 + · · ·+ bx−1 + nbI
• C = c1 + c2 + · · ·+ cx−1 + ncI

If this path is the string data of a stable component, then

(1) A
sB+tC ≥

a
sb+tc

(2) If A
sB+tC = a

sb+tc and C > 0, then B
C ≥

b
c

Proof. Assume there is a Λ-module M with this string data, And assume the con-
dition is violated. It suffices to show that M is not stable, which we will do by
finding a submodule of M that violates stability.

Decompose M as in (3.5). By the definition of the socle filtration, the map

1x2 : Bx ⊕ · · · ⊕By+1 → Asx ⊕ · · · ⊕Asy+1

is injective. By the preprojective relation,

2x̄1 ◦ 1x2 : Bx ⊕ · · · ⊕By+1 → Bx−1 ⊕ · · · ⊕By

is the zero map, so

dim im 2x̄1 ≤ s(ax + · · ·+ ay+1)− (bx + · · ·+ by+1).

Since clearly dim im 2x̄1 ≤ bx + bx+1 + · · · + by, we see that dim im 2x̄1 ≤ nbI .
Similarly, dim im 3x̄1 ≤ ncI .

Let I2 = im 2x̄1 ⊂ Bx ⊕ · · · ⊕By and I3 = im 3x̄1 ⊂ Cx ⊕ · · · ⊕ Cy Consider the
submodule S generated by

M1 ⊕ · · · ⊕Mx−1 ⊕ I2 ⊕ I3.

Then it is clear that dimS2 = B, dimS3 = C.
Consider

1x̄2 ⊕ 1x̄3 : (im 2x̄1)s ⊕ (im 3x̄1)t → Ax−1 ⊕ · · · ⊕Ay.
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Since im 2x1 ⊕ 3x1 ⊂ (im 2x̄1)s ⊕ (im 3x̄1)s the preprojective relation implies that
this has a kernel of dimension at least naI . So, the image of this map has dimension
at most

snbI + tncI − naI .

Thus dimS1 ≤ a1 + · · ·+ ax−1 + snbI + tncI − naI = A.
But then S violates stability, since either

dimS1

sdimS2 + tdimS3
≤ A

sB + tC
<

a

sb+ tc
,

or these are equal and

dimS2

S3
=
B

C
<
b

c
.

6. More examples

Example 6.1. Consider s = t = 2 and the path

(6.2) 1323132231425.

This passes all the conditions in Theorem 1.1. However, by the pre-projective
relation and the fact that this is a socle filtration, the sub-quotient corresponding
to the sub-path 1322314 (shown in red) has the property that im(1x2 + 1x3) has
dimension at most 2. This in turn implies the existence of a submodule

132312223,

and that violates stability. This is caught by Theorem 5.1 with x = y = 2.

Example 6.3. Again take s = t = 2, but now the path

1423132231422314261527.

By the preprojective relation, t he sub-quotient corresponding to 2231422314 has
the property that dim im(x2 + x3) ≤ 4. Thus the vectors corresponding to the
underlined part of the path must general a sub-module violating stability. This is
caught by Theorem 5.1 with x = 2, y = 3.

Example 6.4. Again take s = t = 2, but now the path

14241423314261526.

Then the submodule corresponding to 2331426 has the property that dim im(2x1) ≤
2, which forces a submodule of the form

14241422314

But now the sub-quotient 1422314 has dim im(1x2 + 1x3)) ≤ 2, forcing a submodule
with data

142412223,

and now stability has been violated. The cases when nbI = snaI − (bx+1 + bx+2 +
· · ·+ by+1) (or similarly with ncI) catch this sort of two-step problem.
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Example 6.5. For s = 2, t = 1, the smallest root where the number of paths
satisfying both Theorems 1.1 and 5.1 is not the root multiplicity is 6α1 +5α2 +3α3.
Somewhat surprisingly, the correct multiplicity in 30 but there are 33 paths in this
case. So, the first error is off by 3! The three paths that pass all the conditions but
do not correspond to stable irreducible components are

11221123123123(6.6)

11212123123123(6.7)

11122211233123(6.8)

To see why these do not correspond to stable components, consider (6.6). Look at
the red quotient module. The map 1x3 has a 2 dimensional image by the definition
of the socle filtration, so the preprojective relation 3x1◦1x3 = 0 implies that the map

3x1 is the zero map on this quotient. So, there is a quotient module Q isomorphic
to C3

3, and a submodule P with data

11221121212.

Now, the quotient module marked in bold implies the existence of a submodule P ′

with data

11221212

Denote the span of these four 1s by W . Then the map 1x3 : Q→ T1/W has a one
dimensional kernel K1 by dimension count. Then P ′ ⊕K violates stability.

The arguments for the other two cases are very similar: in both cases, there is a
quotient Q isomorphic to C3

3 by essentially the same argument.
For (6.7), the corresponding submodule is

11212121212,

and the bold sub-quotient implies the existence of a submodule with data

12121212.

Now the argument is the same.
For (6.8), the corresponding submodule is

11122211212,

and the bold sub-quotient implies the existence of a submodule with data

11122212.

Now the argument is the same.

One may ask, why is the first example off by 3? It seems strange, but is just
combinatorially hard to find a place where this sort of example happens. We are
only looking at roots which are minimal in the sense that they can’t be reflected
to smaller roots. So, that means roots aα1 + bα2 + cα3 with b ≤ a, c ≤ a

2 , and
a ≤ b+ c

2 . It is just not possible for combinatorial reasons to construct an example
like that in Example 6.5 for a root satisfying these conditions and smaller than
6α1 + 5α2 + 3α3, and then suddenly there is quite a bit of freedom. However, it
is worth considered roots which are not minimal. Our method works just fine for
such roots, even if they can be reflected to a simpler case. We are then able to find
a more minimal looking example, where the error is only by 1.
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Example 6.9. Take s = 2, t = 1 and the root 4α1 + 3α2 + 3α3. This can be
reflected to 4α1 + 3α2 + α3 and then to 3α1 + 3α2 + α3, a root which we know
has multiplicity 3. However, let’s do the calculation with our methods directly on
4α1 + 3α2 + 3α3. Then a total of 5 paths pass the conditions in Theorem 1.1:

1 1 2 3 3 1 2 1 2 3
1 1 1 2 2 3 3 1 2 3
1 1 1 1 2 2 2 3 3 3
1 1 2 3 1 2 3 1 2 3
1 1 2 3 3 1 1 2 2 3

The path 1123311223 is ruled out by Theorem 5.1 with x = y = 1. Here naI=2,
which is just a2; nbI = 1, since min{b1, a2 − 2b2} = b1 = 1; ncI = 1 because
min{c1, a2 − c2} = a2 − c2 = 1. The condition says

2nbI + ncI − naI
2nbI + ncI

≥ 4

2× 3 + 3
,

which gives 1
3 ≥

4
9 , which is false.

The other path which does not correspond to a stable component is 1123123123.
One can see that this module is not stable by the same argument as in Example
6.5, and in fact the situation is a little simpler here.

7. Computational data

In the cases s = t = 2 and s = 2, t = 1 we computed our estimates in many
examples using Python. The code can be found at [Chan]. The actual multiplicities
for s = 2, t = 1 can be found in [Kac90]. The multiplicities in the case s = t = 2
were calculated by Alex Feingold by modifying mathematica code originally written
by Stephen Miller implementing a version of the Peterson algorithm to calculate
the multiplicities, see [Pet83]. The results are given in Figures 7.2 and 7.1. These
seem to validate our belief that these upper bounds are pretty good.

Note that, for the case s = t = 2, the symmetry of the Dynkin diagram implies
that for any a, k, `, the roots aα1 + kα2 + `α3 and aα1 + `α2 + kα3 have the same
multiplicity. However, our method breaks this symmetry, and does not always
give the same estimates in these cases. See for example the data for the roots
9α1 +8α2 +7α3 and 9α1 +7α2 +8α3. The symmetry breaking only coms into effect
what a and k+` are not relatively prime, so that Dyck paths that touch the diagonal
are possible. So, for instance, our estimates are the same for 9α1 + 9α2 + 7α3 and
9α1 + 7α2 + 9α3.
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Case:
(A,B,C)

Actual multiplicity Bound using Theo-
rems 1.1 and 5.1

Bound using just
Theorem 1.1

(1, 1, 1) 1 1 1
(2, 2, 1) 3 3 3
(2, 1, 2) 3 3 3
(3, 3, 1) 5 5 5
(4, 4, 1) 10 10 10
(3, 2, 2) 10 10 10
(3, 3, 2) 12 12 12
(3, 2, 3) 12 12 12
(5, 5, 1) 16 16 18
(6, 6, 1) 28 28 34
(4, 3, 2) 25 25 25
(7, 7, 1) 43 43 61
(4, 3, 3) 46 46 46
(8, 8, 1) 70 70 114
(5, 4, 2) 61 61 64
(4, 4, 3) 58 58 58
(4, 3, 4) 58 58 58
(5, 5, 2) 73 73 76
(9, 9, 1) 105 106 204
(10, 10, 1) 161 165 377
(6, 5, 2) 133 133 147
(5, 4, 3) 153 153 156
(5, 3, 4) 153 153 156
(11, 11, 1) 236 244 680
(5, 5, 3) 181 182 185
(5, 3, 5) 181 182 185
(7, 6, 2) 283 283 340
(5, 4, 4) 262 262 265
(7, 7, 2) 335 336 392
(5, 5, 4) 307 308 311
(5, 4, 5) 307 308 311
(6, 5, 3) 439 439 458
(8, 7, 2) 565 567 744
(9, 8, 2) 1100 1108 1612
(6, 5, 4) 969 970 990

(10, 7, 6) 251656 251911 284878
(9, 8, 7) 273917 275221 281488
(9, 7, 8) 273917 275046 281363
(9, 9, 7) 303947 306371 311847
(9, 7, 9) 303947 306371 311847

Figure 7.1. Root multiplicities and our estimates for s = t = 2.
The table begins by looking at small roots, then jumps to some of
the largest roots we were able to work with.
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Case:
(A,B,C)

Actual multiplicity Bound using Theo-
rems 1.1 and 5.1

Bound using just
Theorem 1.1

(2, 2, 1) 2 2 2
(3, 3, 1) 3 3 3
(4, 3, 2) 5 5 6
(4, 4, 1) 5 5 6
(5, 5, 1) 7 7 9
(5, 4, 2) 11 11 15
(6, 6, 1) 11 11 16
(5, 5, 2) 15 15 18
(7, 7, 1) 15 15 24
(6, 5, 2) 22 22 34
(8, 8, 1) 22 22 39
(6, 5, 3) 30 33 46
(9, 9, 1) 30 30 61
(7, 6, 2) 42 42 72
(10, 10, 1) 42 42 96
(7, 7, 2) 56 56 79
(11, 11, 1) 56 56 148
(7, 6, 3) 77 83 121
(8, 7, 2) 77 77 146
(12, 12, 1) 77 77 233
(7, 7, 3) 101 101 134
(9, 8, 2) 135 137 283
(8, 7, 3) 176 187 296
(9, 9, 2) 176 176 287
(8, 7, 4) 231 253 379
(8, 8, 3) 231 233 316
(10, 9, 2) 231 235 531
(9, 7, 4) 297 317 725
(9, 8, 3) 385 410 682
(11, 10, 2) 385 399 974
(9, 8, 3) 385 410 682
(11, 11, 2) 490 499 934
(9, 8, 4) 627 674 1062
(9, 9, 4) 792 807 1107
(10, 9, 3) 792 839 1498
(10, 8, 5) 1002 1218 2335
(10, 9, 4) 1574 1656 2754
(11, 10, 3) 1574 1673 3161
(10, 9, 5) 1957 2167 3404
(11, 9, 4) 1957 2029 5113
(11, 11, 3) 1956 2000 3134
(11, 9, 5) 3007 3492 6942
(11, 10, 4) 3713 3912 6776

Figure 7.2. Root Multiplicity Data: s=2, t=1.
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