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Abstract. Building on our previous work in rank two, we use quiver varieties

to give a combinatorial upper bound on dimensions of certain imaginary root

spaces for rank 3 symmetric Kac-Moody algebras. We describe an explicit
method for extracting combinatorics when the Dynkin diagram is bipartite (i.e.

two of the nodes are not connected). As in rank two we believe these bounds

are quite tight and we give computational evidence to this effect, although
there is more error in rank 3 than in rank 2.

1. Introduction

In [Tin21], we developed a method for studying root multiplicities of symmet-
ric Kac-Moody algebras using quiver varieties. This gives a framework for finding
combinatorial upper bounds on the multiplicities and we conjectured that the re-
sulting bounds, at least in some cases, are quite tight. While the construction is
general, we only translated it to combinatorics in rank two. There the upper bound
consisted of the number of rational Dyck paths satisfying various conditions.

Here we develop explicit combinatorics using the same method in certain rank
three cases. Specifically, we consider a Kac-Moody algebra g with Dynkin diagram

. . .

2 1 3

s t

meaning there are s edges on the left and t edges on the right. Our main result is
the following:

Theorem 1.1. For any imaginary root β = aα1 + bα2 + cα3 with gcd(a, b, c) = 1,
the root multiplicity mβ is bounded above by the number of words of the form

(1.2) 1a12b13c11a22b23c2 · · · ,
where the number of 1s is a, the number of 2s is b, the number of 3s is c, and,

(1) For each i, ai ̸= 0 and bi or ci is also non-zero.
(2) Draw a path in the plane by drawing each 1 as a vertical line of length

1, each 2 as a horizontal line of length s, and each 3 as a horizontal line
of length t. The result is a rational Dyck path. That is, a straight line
connecting the beginning and end of the path stays weakly below the path.

(3) If a prefix 1a12b13c1 · · · 1ak2bk3ck corresponds to a point where the Dyck path

touches the diagonal, then
b1 + · · ·+ bk
c1 + · · ·+ ck

≥ b

c
. Equivalently, if you deform

the path to have each 2 correspond to an edge of length s− ϵ, the resulting
path still stays above its diagonal.

(4) For each i ≥ 1,
bi
ai

≤ s and
ci
ai

≤ t.

For each i ≥ 1, let nBi = min{bi, sai+1 − bi+1}, nCi = min{ci, tai+1 − ci+1}. Then
1
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(5) ai+1 ≤ snBi + tnCi −max{s−1nBi, t
−1nCi}.

(6)
ai+1

snBi + tnCi
≤ 1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
. Note: if snBi + tnCi = 0

then condition (5) would have been violated.

Similar methods should work for any symmetric Kac-Moody algebra whose
Dynkin diagram is bipartite, with the combinatorics being most similar when the
Dynkin diagram is a star. The method from [Tin21] is even more general, but as
the diagram gets more complex it is harder to describe things combinatorially.

Theorem 1.1 does not give the complete list of “local” conditions on the path,
so the upper bound will diverge exponentially from the correct answer. This is in
contrast to the rank 2 situation, where we believe we have listed all local conditions.
Nonetheless we give evidence that the bounds are meaningful. We also discuss ways
to tighten the bounds.

Root multiplicities have been studied quite extensively, see [CFL14] for a sur-
vey. They can be calculated exactly, see [BM79, Pet83], although the formulae are
complicated. Special cases have been further investigated and combinatorialized in
[FF83, KLL17, KM95]. But open questions remain. See e.g. [CFL14, Open Prob-
lems 2 and 3] and Frenkel’s conjectural upper bound for hyperbolic cases [Fre85].
We hope our work sheds some light on the situation, particularly on asymptotics.

2. Background

2.1. Kac-Moody algebras and B(−∞). Consider the Kac-Moody algebra g as-
sociated to a symmetric Cartan matrix A = (aij) with index set I, as in [Kac90].
The Lie algebra g is graded by the root lattice Q, which is the Z-span of the simple
roots αi for i ∈ I. By definition a non-zero β ∈ Q is a root if dim gβ ̸= 0, in
which case mβ := dim gβ is called the root multiplicity. All roots are either posi-
tive, meaning they are Z≥0 linear combinations of the αi, or negative, meaning the
negatives of these. Let ∆ denote the set of roots and ∆+ the set of positive roots.

There is an inner product on Q defined by, for simple roots αi, αj , ⟨αi, αj⟩ = aij .
All roots β have the property that either ⟨β, β⟩ = 2, in which case β is called a
real root, or ⟨β, β⟩ ≤ 0, in which case β is called an imaginary root. The reflection
corresponding to each αi acts on weight space by

si(ν) = ν − ⟨αi, ν⟩αi.

This has various important properties, including:

• It preserves the inner product.
• It preserves root multiplicities.
• It preserves the set of positive imaginary roots, meaning it acts as a per-
mutation on this set.

2.2. The crystal B(−∞). We don’t work directly with g here but instead with
the crystal B(−∞). This is a combinatorial object related most closely not to g
but to its universal enveloping algebra U(g). As a vector space

U(g) = U−(g)⊗ U0(g)⊗ U+(g),

where U−(g), U0(g), U+(g) are the subalgebras generated by the negative root
spaces, the Cartan subalgebra, and the positive root spaces, respectively. The
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graded dimension of U+(g) is

dimU+(g) =
∏

β∈∆+

(
1

1− eβ

)mβ

.

That is, the dimension of U+(g)γ is the number of ways to write γ as a sum of
positive roots, taking into account multiplicities. This is also called the Kostant
partition function of γ.

The crystal B(−∞) is a set along with operators ei, fi : B(−∞) → B(−∞)∪{∅}
for each i ∈ I which satisfy various axioms. There is a weight function wt :
B(−∞) → Q and the number of elements of a given weight γ is the dimension of
the γ weight space in U+(g). See [Kas95] or [HK02] (which consider B(∞), the
Cartan involution of B(−∞)). Here we use the geometric realization of B(−∞)
from [KS97], explained below.

2.3. Quiver varieties. Fix a graph G with vertex set I and edge set E. Let A
be the set of arrows, so there are two arrows for each edge e ∈ E, one pointing in
each direction. For each arrow a let so(a) be the source and ta(a) be the target,
meaning a points from so(a) to ta(a).

Definition 2.1. The path algebra C[G] is the C-algebra with basis consisting of
all paths in G (sequences of arrows ak · · · a1 with so(ai+1) = ta(ai) along with the
lazy paths ei at each vertex) and multiplication given by

(bk · · · b1)(aj · · · a1) =

{
bk · · · b1aj · · · a1 if so(b1) = ta(aj)

0 otherwise.

Choose a subset Ω of A where each edge appears in exactly one direction (sometimes
called an orientation of the graph) and define ϵ(a) = 1 if a ∈ Ω and −1 otherwise.
For a ∈ A, let ā denote the reverse arrow.

Definition 2.2. The preprojective algebra Λ is the quotient of C[G] by the ideal
generated by

ϵ =
∑
a∈A

ϵ(a)āa.

Definition 2.3. For any I-graded vector space V = ⊕IVi, let Λ(V ) be the variety
of actions of Λ on V where the lazy path at i acts as projection onto Vi, and which
are nilpotent in the sense that all paths of length at least dimV act as 0.

An action of C[G] on V is determined by a homomorphism for each arrow so can
be described as

(xa)a∈A ∈ ⊕AHom(Vso(a), Vta(a)).

Λ(V ) is a sub-variety of this space. Up to isomorphism it depends only on the
dimension vector v = (vi)i∈I , where vi = dimVi.

Associate to G a symmetric Cartan matrix whose index set is the set of vertices,
the diagonal entries are 2, and other entries are defined by setting −aij to be
the number of edges connecting i and j. We identify a dimension vector v with
γ =

∑
i viαi ∈ Q and sometimes denote Λ(V ) by Λ(γ). Denote the set of irreducible

components of Λ(γ) by IrrΛ(γ). The following is due to Kashiwara and Saito
[KS97], see also [NT18, Proposition 3.14].
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Theorem 2.4. The crystal B(−∞) can be indexed by
∐

IrrΛ(γ). The operation
fmax
i which applies the crystal operator fi as many times as possible before returning
∅ acts on X ∈ IrrΛ(v) as follows: Fix T ∈ X. Let Soci(T ) be the intersection of
the socle of T with Vi and set γ′ = γ − dimSoci(T )αi. Generically T/Soci(T ) is
isomorphic to a point in a unique Y ∈ IrrΛ(γ′), and fmax

i X = Y .

Example 2.5. The case s = 2, t = 1 is particularly important here. That is, the
Dynkin diagram

. . .

2 1 3

a1

a2

a3

with two edges on the left and one on the right. Orient all the edges to point away
from the center node, and call the oriented arrows a1, a2, a3. A representation of
C[G] on V1 ⊕ V2 ⊕ V3 consists of 6 maps:

xa1
, xa2

: V1 → V2, xa3
: V1 → V3, xā1

, xā2
: V2 → V1, xā3

: V3 → V1.

Λ(v) is the sub-variety cut out by the condition that all paths of length greater
than dimV1 + dimV2 + dimV3 act as 0 and the preprojective relations

ā1a1 + ā2a2 + ā3a3 = 0, a1ā1 + a2ā2 = 0, a3ā3 = 0,

where these are equations in End(V1),End(V2),End(V3) respectively.

2.4. Stability conditions. We loosely follow [BKT14], drawing on notation from
[TW16] as well. See also [Tin21].

Definition 2.6. A charge c is a linear function c : Q → C such that c(αi) is in
the upper half plane for all simple roots αi.

For a fixed charge c, each representation V of Λ has a unique filtration

∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

where the sub-quotients V i = Vi/Vi−1 satisfy

(HN1) V i has no submodule S with arg(c(dimS)) < arg(c(dimV i)),
(HN2) arg(c(dimV 1)) < arg(c(dimV 2)) < · · · < arg(c(dimV k)).

Here arg(z) is the angle formed by z, 0 and 1 in the complex plane. We call this
the HN filtration since it is a special case of a Harder-Narasimhan filtration as in
e.g. [Rud97].

2.5. String data. The following was first studied by Kashiwara [Kas95, §8.2] and
was further developed by Littelmann [Lit98]. Choose a sequence i1, i2, i3 . . . of nodes
in the Dynkin diagram with each appearing infinitely many times. The string data
(a1, a2, . . .) of b ∈ B(−∞) is

a1 = max{n : fn
i1b ̸= 0},

a2 = max{n : fn
i2f

a1
i1
b ̸= 0},

and so on. Record this as a word in the letters I consisting of a1 i1’s, followed by
a2 i2’s, and so on. Sometimes we write this as

ia1
1 ia2

2 · · · iak

k .

The string data uniquely determines an element b ∈ B(−∞).
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Indexing B(−∞) by ⊔IrrΛ(v), Theorem 2.4 shows that the string data of X ∈
IrrΛ(v) gives the dimensions of the graded socle filtration of a generic T ∈ X:

a1 = dimHom(Ci1 , T ),

a2 = dimHom(Ci2 , T/i1socle),

and so on, where Ci is the one dimensional simple module in degree i.

Remark 2.7. There are only non-trivial extensions between Ci and Cj if nodes i
and j are connected in the Dynkin diagram.

2.6. Stablilty and root multiplicities. Fix a stability condition c so that, for
any roots α and β, if arg c(α) = arg c(β) then β and α are parallel. The following
is the key to our method. It can be extracted from [BKT14], see [Tin21, Theorem
3.3] for the exact statement.

Theorem 2.8. For any γ ∈ Q+, the number of stable irreducible components of
Λ(γ) is the sum over all ways of writing γ = v1β1 + · · ·+ vnβn as a sum of parallel
roots βk of the product mβ1 · · ·mβn of the corresponding root multiplicities.

Corollary 2.9. If γ is not parallel to any smaller root then the number of stable
irreducible components of Λ(γ) is exactly mγ . Equivalently, mγ is the number of
string data associated to stable irreducible components. This in particular holds if
γ = a1α1 + · · ·+ akαk with gcd(a1, . . . , ak) = 1.

3. Rank three and proof of Theorem 1.1

3.1. Setup. As in the introduction, consider the case of the Dynkin diagram

. . .

2 1 3

s t

The corresponding Cartan matrix is 2 −s −t
−s 2 0
−t 0 2

 .

Consider the charge defined by

c(α1) = −1 + i, c(α2) = (s− ϵ)(1 + i), c(α3) = t(1 + i)

where ϵ is infinitesmal. Then arg(c(a1α1+b1α2+c1α3)) < arg(c(a2α1+b2α2+c2α3))
exactly if {

sb1+tc1
a1

> sb2+tc2
a2

, or
sb1+tc1

a1
= sb2+tc2

a2
and b1

c1
< b2

c2
.

If β = aα1 + bα2 + cα3 and gcd(a, b, c) = 1 then Theorem 2.8 shows that mβ is
the number of stable irreducible components of Λ(β). We will prove Theorem 1.1
by showing that the string data of each stable irreducible component satisfies all
conditions in that theorem. Therefore counting words satisfying those conditions
gives an over-estimate of the root multiplicity.

Remark 3.1. We could in principle use any charge to get an upper bound on root
multiplicities. This one is convenient for technical reasons.
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3.2. Two lemmas about root space.

Lemma 3.2. Fix γ = aα1 + bα2 + cα3 ∈ Q with a, b, c ≥ 0.

• Assume a
sb+tc < 1

2 −
√

(s2+t2)2−4(s2+t2)

2(s2+t2) and s2s3β = aα1 + b′α2 + c′α3 has

b′, c′ ≥ 0. Then a
sb′+tc′ >

1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) .

• Assume a
sb+tc > 1

2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) and s1β = a′α1 + bα2 + cα3 has

a′ ≥ 0. Then a′

sb+tc < 1
2 −

√
(s2+t2)2−4(s2+t2)

2(s2+t2) .

Proof. Consider the first case. By definition

s2s3β = aα1 + (sa− b)α2 + (ta− c)α3.

Then
a

s(sa− b) + t(ta− c)
=

a

(s2 + t2)a− (sb+ tc)

=
1

s2 + t2 − sb+tc
a

≥ 1

s2 + t2 − 1

1
2−

√
(s2+t2)2−4(s2+t2)

2(s2+t2)

=
1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
,

where the last step requires some simplification. The second case is similar.

Lemma 3.3. For any positive imaginary root β = aα1 + bα2 + cα3,

1

2
−

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
<

a

sb+ tc
<

1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
< 1.

Proof. Proceed by induction on a+sb+tc. The base case is trivial since if a+sb+tc =
1 there are no imaginary roots. Fix a positive imaginary root β with a+sb+tc > 1.
First assume the left inequality fails. Since reflection preserves the set of positive
imaginary roots s2s3β = aα1 + b′α2 + c′α3 has b′, c′ ≥ 0. Then, by Lemma 3.2
s2s3β = aα1 + b′α2 + c′α3 satisfies

a

sb′ + tc′
>

1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

This certainly also implies a + sb′ + tc′ < a + sb + tc so by induction s2s3β is
not an imaginary root, contradicting the assumption that β is. The other case is
similar.

3.3. Specialized notation. Fix

T = A⊕B ⊕ C ∈ Λ(aα1 + bα2 + cα3).

Take string data as in §2.5 using the sequence 1, 2, 3, 1, 2, 3, · · · . We use the notation
a1, b1, c1, a2, b2, c2, · · · for this string data, where,

a1 = dimHom(C1, T )

b1 = dimHom(C2, T1), where T1 = T/1− socle

c1 = dimHom(C3, T2), where T2 = T1/2− socle

a2 = dimHom(C1, T3), where T3 = T2/3− socle,
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and so on. Taking every third step in this socle filtration gives a filtration by I
graded submodules:

T = Ak ⊕Bk ⊕ Ck ⊃ Ak−1 ⊕Bk−1 ⊕ Ck−1 ⊃ · · · ⊃ A1 ⊕B1 ⊕ C1.

Definition 3.4. For each j, let Āj = Aj/Aj−1. More generally, for any 1 ≤ i ≤
j ≤ k, let Āij = Aj/Ai−1. Then dim Āj = aj and dimAij = ai + · · · + aj . Define
subquotients for B and C similarly.

Remark 3.5. For any 1 ≤ i < j ≤ k,

Āij + B̄ij + C̄ij and Āij + B̄i−1,j−1 + C̄i−1,j−1

are both sub-quotients of T .

Definition 3.6. Fix T ∈ Λ(aα1 + bα2 + cα3). Define the following maps:

1x2 =
⊕

so(a)=2,ta(a)=1

xa : B → As, 2x1 =
⊕

so(a)=1,ta(a)=2

xa : A → Bs,

1x3 =
⊕

so(a)=3,ta(a)=1

xa : C → At, 3x1 =
⊕

so(a)=1,ta(a)=3

xa : A → Ct,

1x̄2 =
∑

so(a)=2,ta(a)=1

xa : Bs → A, 2x̄1 =
∑

so(a)=1,ta(a)=2

xa : As → B,

1x̄3 =
∑

so(a)=3,ta(a)=1

xa : Ct → A, 3x̄1 =
∑

so(a)=1,ta(a)=3

xa : At → C.

For any 1 ≤ i < j ≤ k these maps make sense if A,B,C are replaced in the domain
with Aij , Bij or Cij , and in the range by Aij , Bi−1,j−1, and Ci−1,j−1, simply by
applying the definition to the sub-quotient representations from Remark 3.5. We
denote the resulting maps with a superscript of i or ij.

The preprojective relations are then

2x̄1 ◦ 1x2 = 0, 1x̄2 ◦ 2x1 + 1x̄3 ◦ 3x1 = 0, 3x̄1 ◦ 1x3 = 0.

3.4. Proof of the main theorem. We will show that the conditions of Theorem
1.1 in fact holds for all stable modules, from which the statement on stable compo-
nents follows. So, fix a positive imaginary root β = aα1 + bα2 + cα3 and a stable
module T ∈ Λ(aα1 + bα2 + cα3) with string data a1, b1, c1, a2.... Since there are no
imaginary roots of the form bα2 + cα3 we can assume a ̸= 0.

Lemma 3.7. For each 1 ≤ i ≤ k, ai ̸= 0 and bi or ci is also non-zero.

Proof. First assume some ai = 0. If i > 1, Then two consecutive steps in the
filtration are

Ai−1 ⊕Bi−1 ⊕ Ci−1, and Ai−1 ⊕Bi ⊕ Ci.

Since there are no non-trivial extension of the simple modules C2 and C3 with
themselves or each other, it follows that Bi = Bi−1 and Ci = Ci−1 as well. But
then

Ai ⊕Bi ⊕ Ci = Ai−1 ⊕Bi−1 ⊕ Ci−1

which is impossible.
If i = 1 then this implies that either C2 or C3 is a submodule of T . Since a ̸= 0

this contradicts stability.
The proof that bi or ci is also non-zero for each i is similar.



8 PATRICK CHAN AND PETER TINGLEY

Lemma 3.8. Draw a path in the plane by drawing each 1 as a vertical line of length
1, each 2 as a horizontal line of length s, and each 3 as a horizontal line of length t.
The result is a rational Dyck path. That is, a straight line connecting the beginning
and end of the path stays weakly below the path. Furthermore, for any k where the
path touches the diagonal, b1+···+bk

c1+···+ck
≥ b

c .

Proof. Each left-prefix of the sequence corresponds to a sub-model of T and if the
conditions do not hold then this gives a submodule that violates stability.

Example 3.9. Consider the case s = 2, t = 1.

11223122312

becomes the path

•
• • • •

• • • •
• •

which is not a rational Dyck path because it dips below the diagonal at (10, 3). To
see the relationship with stability, overly this picture on the complex plane oriented
so that the real axis is at 45 degrees to the picture as shown. Then each node shown
along the path is c(S) for the submodule S corresponding to a left subword s. The
stability condition is violated because one of the nodes is below the diagonal so
the charge of that submodule has a smaller argument than the charge of the whole
module.

Example 3.10. Again consider the case s = 2, t = 1. Both

112331122 and 112211233

correspond to the Dyck path

•

The submodule of 112331122 corresponding to 11233 fails stability because it touches
the diagonal and has a lower ratio of 2s to 3s than the whole word. 112211233 does
correspond to a stable component since 1122 has a higher ratio of 2s to 3s. Equiv-
alently, since 2|c(α3)| is slightly larger than |c(α2)|, in the first case the node is
actually slightly to the right of the diagonal whereas in the second case it is slightly
to the left.

Lemma 3.11. For every 1 ≤ i ≤ k, bi ≤ sai and ci ≤ tai.

Proof. Assume T has this string data and bi > sai. Then by dimension count

1x2 : Bi → A
⊕s

i must have a kernel. If i > 1 this contradicts the definition of the
socle filtration, and if i = 1 it contradicts stability. Thus bi ≤ sai for all i. Similarly
ci ≤ tai.
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Lemma 3.12. Fix i < k and let

nBi = min{bi, sai+1 − bi+1}, nCi = min{ci, tai+1 − ci+1}.
Then

ai+1 ≤ snBi + tnCi −max{s−1nBi, t
−1nCi}.

Proof. By the definition of the socle filtration, 1x
i+1
2 : Bi+1 → A

⊕s

i+1 is injective.
Also, by the preprojective relations,

2x̄
i
1 ◦ 1x

i+1
2 : Bi+1 → Bi

is the zero map. Hence

dim im 2x̄
i
1 ≤ dimA

⊕s

i+1 − dimBi+1 = sai+1 − bi+1.

Certainly

dim im 2x̄
i
1 ≤ dimBi = bi.

Putting this together,

dim im 2x̄
i
1 ≤ nBi.

Similarly, dim im 3x̄
i
1 ≤ nCi.

Let Ib = im 2x̄
i
1 ⊂ Bi and Ic = im 3x̄

i
1 ⊂ Ci. These have dimensions at most nBi

and nCi respectively, so define eBi, eCi ≥ 0 so that

dim Ib = nBi − eBi and dim Ic = nCi − eCi

Again using the definition of a socle filtration,

2x
i
1 ⊕ 3x

i
1 : Ai+1 → I⊕s

b ⊕ I⊕t
c

is injective, so the dimension of its image is ai+1.
Now, 1x

i
2|Ib is injective, so its image has dimension nBi − eBi. Recalling that

1x
i
2|Ib =

⊕
a:so(a)=2,ta(a)=1

xi
a,

at least one of these xi
a must have dim imxi

a|Ib > s−1(nBi−eBi). This in turn implies
that dim im 1x̄

i
2|Is

b
≥ s−1(nBi − eBi). Similarly, dim im 1x̄

i
3|It

c
≥ t−1(nCi − eCi). So,

dim im 1x̄
i
2 + 1x̄

i
3|Is

b+It
c
≥ max{s−1(nBi − eBi), t

−1(nCi − eCi)}.
Using the preprojective relation again,

(1x̄
i
2 + 1x̄

i
3) ◦ (2xi

1 ⊕ 3x
i
1) = 0.

Hence

ai+1 = dim im(2x
i
1 ⊕ 3x

i
1)

≤ dimker(1x̄
i
2 + 1x̄

i
3)|Is

b+It
c

= dim(Isb + Itc)− dim im(1x̄
i
2 + 1x̄

i
3)|Is

b+It
c

≤ s(nBi − eBi) + t(nCi − eCi)−max{s−1(nBi − eBi), t
−1(nCi − eCi)}

≤ snBi + tnCi − seBi − teCi −max{s−1nBi, t
−1nCi}+max{s−1eBi, t

−1eCi}
≤ snBi + tnCi −max{s−1nBi, t

−1nCi},
where the last step follows because s, t ≥ 1 and eBi, eCi ≥ 0.

Lemma 3.13. Fix 1 < i ≤ k.
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• Assume that, for some i, Ai ⊕ Bi ⊕ Ci has a submodule of dimension

a′, b′, c′ with a′

sb′+tc′ <
1
2 −

√
(s2+t2)2−4(s2+t2)

2(s2+t2) . Then Ai ⊕Bi−1 ⊕ Ci−1 has

a submodule of dimension a′, b′′, c′′ with a′

sb′′+tc′′ >
1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) .

• Assume that, for some i, Ai ⊕Bi−1 ⊕ Ci−1 has a submodule of dimension

a′, b′, c′ with a′

sb′+tc′ >
1
2 +

√
(s2+t2)2−4(s2+t2)

2(s2+t2) . Then Ai−1⊕Bi−1⊕Ci−1 has

a submodule of dimension a′′, b′, c′ with a′′

sb′+tc′ <
1
2 −

√
(s2+t2)2−4(s2+t2)

2(s2+t2) .

Proof. Consider the first case. By the preprojective relation

2x̄
i
1 ◦ 1x

i
2 = 0.

The map 1x
i
2 is injective, so 0 ≤ dim im 2x̄

i
1 ≤ sa′ − b′. Similarly, 0 ≤ dim im 3x̄

i
1 ≤

ta′−c′. This implies the existence of a submodule of Ai⊕Bi−1⊕Ci−1 of dimension
a′, b′′, c′′ with

a′

sb′′ + tc′′
>

a′

s(sa′ − b′) + t(ta′ − c′)
.

This last fraction is the ratio for s2s3(a
′α1 + b′α2 + c′α3), so is larger than 1

2 +√
(s2+t2)2−4(s2+t2)

2(s2+t2) by Lemma 3.2.

The other case is similar.

Lemma 3.14. For 1 ≤ i < k and any submodule A
′
i+1⊕B

′
i⊕C

′
i of Ai+1⊕Bi⊕Ci

with dimA
′
i+1 = a′i+1,dimB

′
i = b′i,dimC

′
i = c′i,

(3.15)
a′i+1

sb′ + tc′
≤ 1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

In particular,

(3.16)
ai+1

snBi + tnCi
≤ 1

2
+

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Proof. Assume there is a sub-module where (3.15) fails. If i = 1 then, by Lemma
3.13, A1 ⊕B1 ⊕ C1 has a submodule A′

1 ⊕B′
1 ⊕ C ′

1 of dimension (a′1, b
′
1, c

′
1) with

a′1
sb′1 + tc′1

<
1

2
−

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Since aα1 + bα2 + cα3 is imaginary, Lemma 3.3 shows that

a

sb+ tc
>

1

2
−

√
(s2 + t2)2 − 4(s2 + t2)

2(s2 + t2)
.

Taking reciprocals we see that A′
1 ⊕B′

1 ⊕ C ′
1 violates stability.

If i > 1 then applying Lemma 3.13 twice gives a sub-quotient for a lower i which
violates the same condition, and one proceeds by induction.

To see (3.16), notice that, as in the proof of Lemma 3.12, the preprojective

relation implies that the image of 2x1⊕ 3x1;A
s+t

i+1 → Bi⊕Ci has dimension at most
(nBi, nCi). Hence if this equation is violated it immediately gives a sub-quotient
violating (3.15).
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Proof of Theorem 1.1. A generic module in a stable irreducible component is sta-
ble, and by definition the string data of a generic module is the string data of the
component. Theorem 1.1 gives conditions that must be satisfied by a stable com-
ponent. To prove that these conditions hold, it suffices to prove that they must
hold for the string data of any stable module. In this way:

Lemma 3.7 shows (1).
Lemma 3.8 shows (2) and (3).
Lemma 3.11 shows (4).
Lemma 3.12 shows (5).
Lemma 3.14 shows (6).

4. Examples

4.1. The case s = 2, t = 1. In this case many root multiplicities can be found in
[Kac90, Chapter 11]. To estimate the multiplicity of β = aα1 + bα2 + cα3 with
gcd(a, b, c) = 1, Theorem 1.1 says we should count words 1a12b13c1 · · · 1ak2bk3ck in
1,2,3 such that

• For each i, ai ̸= 0 and bi or ci is also non-zero.
• The resulting path is a rational Dyck path.
• If a prefix 1a12b13c1 · · · 1ak2bk3ck corresponds to a point where the Dyck

path touches the diagonal, then
b1 + · · ·+ bk
c1 + · · ·+ ck

>
b

c
.

• bi
ai

≤ 2,
ci
ai

≤ 1

Let nBi = min{bi, 2ai+1 − bi+1}, nCi = min{ci, ai+1 − ci+1}. Then
• ai+1 ≤ 2nBi + nCi −max{nBi

2
, nCi} and

• ai+1

2nBi + nCi
≤ 1

2
+

√
5

10
≃ 0.7236.

The resulting estimates can be found in the Figure 8.2 for many roots.

Example 4.1. For β = 4α1 + 3α2 + 2α3, six paths satisfy these conditions:
112312123
112123123
111223123
112211233
112311223
111122233

However, the root multiplicity is 5. The word which does not correspond to a valid
stable component is 112311223. The reason is that the sub-quotient Q correspond-
ing to the sub-string 2311 (shown in red) has the property that the C2 and C3

together have only the freedom to map to a single copy of C1. This implies the
existence of a submodule with socle filtration 123 which violates stability. This
path will be eliminated by the refined conditions in the next section.

4.2. The case s = t = 2. . To estimate the multiplicity of β = aα1 + bα2 + cα3,
Theorem 1.1 now says we should count words in 1,2,3 such that

• For each i, ai ̸= 0 and bi or ci is also non-zero.
• The resulting path is a Dyck path.
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• If a prefix 1a12b13c1 · · · 1ak2bk3ck corresponds to a point where the Dyck

path touches the diagonal, then
b1 + · · ·+ bk
c1 + · · ·+ ck

>
b

c
.

• bi
ai
,
ci
ai

≤ 2

Let nBi = min{bi, 2ai+1 − bi+1}, nCi = min{ci, 2ai+1 − ci+1}. Then
• ai+1 ≤ 2nBi + 2nCi −max{nBi

2
,
nCi

2
}.

• ai+1

2nBi + 2nCi
≤ 1

2
+

√
2

4
.

The resulting estimates can be found in the Figure 8.1 for many roots. We now
consider a few cases where our estimate is above the actual multiplicity, and which
motivate the conditions in the next section.

Example 4.2. The path

(4.3) 1323132231425

satisfies all the conditions in Theorem 1.1. However, by the pre-projective relation
and the fact that this is a socle filtration, the sub-quotient corresponding to the
sub-path 1322314 (shown in red) has dim im(1x2 + 1x3) ≤ 2. This then implies the
existence of a submodule

132312223,

and that violates stability. This is caught by Theorem 5.1 below with i = j = 2.

Example 4.4. Now consider

1423132231422314261628.

By the preprojective relation, the sub-quotient corresponding to 2231422314 has
dim im(x2 + x3) ≤ 4. Thus the vectors corresponding to the underlined part of the
path must generate a sub-module violating stability. This is caught by Theorem
5.1 with i = 2, j = 3 and motivates why we need to consider cases where i ̸= j
where we are looking at a longer segment of the word.

Example 4.5. Now take
14241423314261526.

Then the submodule corresponding to 2331426 has dim im(2x1) ≤ 2, which forces a
submodule of the form

14241422314.

But now the sub-quotient 1422314 has dim im(1x2 + 1x3) ≤ 2 forcing a submodule
with data

142412223,

and now stability has been violated. The cases when nBij = snAij − (bi+1 + bi+2 +
· · ·+ bj+1) (or similarly with nCij) in Theorem 5.1 catch this sort of problem.

5. Refined conditions

In [Tin21] two types of conditions are given: [Tin21, Theorem 4.3] gives local
conditions that must be satisfied anywhere along the path of a stable component,
and [Tin21, Theorem 4.9] gives extra conditions that must be satisfied near the
beginning of the path and at places where it is near the diagonal. Our Theorem 1.1
gives conditions analogous to [Tin21, Theorem 4.3]. We now give some conditions
analogous to [Tin21, Theorem 4.9].
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Theorem 5.1. Fix β = aα1 + bα2 + cα3 and a path 1a12b13c1 · · · 1ak2bk3ck with
a1 + · · ·+ ak = a, b1 + · · ·+ bk = b, c1 + · · ·+ ck = c. For any 1 ≤ i ≤ j < k, let

• nAij = ai+1 + ai+2 + · · ·+ aj+1

• nBij = min(bi + bi+1 + · · ·+ bj , snAij − (bi+1 + bi+2 + · · ·+ bj+1))
• nCij = min(ci + ci+1 + · · ·+ cj , tnAij − (ci+1 + ci+2 + · · ·+ cj+1))

• ãij = a1 + a2 + · · ·+ ai−1 + snBij + tnCij − nAij

• b̃ij = b1 + b2 + · · ·+ bi−1 + nBij

• c̃ij = c1 + c2 + · · ·+ ci−1 + nCij

If this path is the string data of a stable component, then

(1)
ãij

sb̃ij+tc̃ij
≥ a

sb+tc ,

(2) If
ãij

sb̃ij+tc̃ij
= a

sb+tc and c̃ij > 0, then
b̃ij
c̃ij

≥ b
c .

Proof. Fix a stable Λ-module T = A ⊕ B ⊕ C with this string data, which must
exist if this corresponds to a stable component. Fix i and j.

By the definition of the socle filtration, the map

1x
i+1,j+1
2 : Bi+1,j+1 → A

s

i+1,j+1

is injective. By the preprojective relation,

2x̄
i+1,j+1
1 ◦ 1x

i+1,j+1
2 : Bi+1,j+1 → Bi,j

is the zero map, so

dim im 2x̄
i+1,j+1
1 = dimA

s

i+1,j+1−dimker 2x̄
i+1,j+1
1 ≤ s(ai+1+· · ·+aj+1)−(bi+1+· · ·+bj+1).

Looking at the dimension of the target space, dim im 2x̄
i+1,j+1
1 ≤ bi+bi+1+ · · ·+bj .

Together this means dim im 2x̄
i+1,j+1
1 ≤ nBij . Similarly, dim im 3x̄

i+1,j+1
1 ≤ nCij .

Define eBij and eCij by

dim im 2x̄
i+1,j+1
1 = nBij − eBij , and dim im 3x̄

i+1,j+1
1 = nCij − eCij .

Let B̃ij ⊂ Bj be the preimage of im 2x̄
i+1,j+1
1 in the quotient Bij = Bj/Bi−1

and C̃ij ⊂ Cj be the preimage of im 3x̄
i+1,j+1
1 in Cij = Cj/Ci−1. Then

dim B̃ij = b̃ij − eBij , and dim C̃ij = c̃ij − eCij .

By the preprojective relation, the kernel of

1x̄
ij
2 ⊕ 1x̄

ij
3 : (im 2x̄

i+1,j+1
1 )s ⊕ (im 3x̄

i+1,j+1
1 )t → Aij

contains im(2x
i+1,j+1
1 ⊕ 3x

i+1,j+1
1 ), and by the definition of the socle filtration this

map is injective so its image has dimension nAij . Thus

dim im(1x̄
ij
2 ⊕1x̄

ij
3 )|(im 2x̄

i+1,j+1
1 )s⊕(im 3x̄

i+1,j+1
1 )t ≤ snBij−seBij+tnCij−teCij−nAij .

Let Ãij by the preimage of im(1x̄
ij
2 ⊕ 1x̄

ij
3 )|(im 2x̄

i+1,j+1
1 )s⊕(im 3x̄

i+1,j+1
1 )t ⊂ Aij in

Aij = Aj/Ai−1. Then

dim Ãij ≤ snBij−seBij+ tnCij− teCij−nAij+a1+ · · ·+aj−1 = ãij−seBij−teCij .

By construction,

M̃ = Ãij ⊕ B̃ij ⊕ C̃ij
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is a submodule of T . The calculations above show

(5.2)
dim Ãij

sdim B̃ij + tdim C̃ij

≤ ãij − seBij − teCij

sb̃ij + tc̃ij − seBij − teCij

.

By stability

(5.3)
dim Ãij

sdim B̃ij + tdim C̃ij

≥ a

sb+ tc
,

so

(5.4)
ãij − seBij − teCij

sb̃ij + tc̃ij − seBij − teCij

≥ a

sb+ tc
.

We know a
sb+tc < 1, so it follows that

ãij

sb̃ij + tc̃ij
≥ a

sb+ tc
.

To get equality eBij and eCij must both be zero, and then by stability
b̃ij
c̃ij

≥ b
c .

6. More examples

6.1. The case s = t = 2 revisited.

Example 6.1. The smallest example in Figure 8.1 where the number of paths
satisfying both Theorems 1.1 and 5.1 is not the root multiplicity is 6α1+5α2+α3,
where the multiplicity is 21 but there are 22 paths. The path which appears in our
list but which does not correspond to a stable module is

13221223122.

It is not too difficult to verify that this satisfies all of our conditions (or you can
use our code). To see why it does not correspond to a stable module, notice that

• Because of the preprojective relation at node 2, the rightmost 122 implies
that this 1 has no freedom to map to anything in degree 2. So there is a
submodule with data 13221231.

• Now the sub-quotient with data 221231 (colored red) has the property that,
by dimension count and the preprojective relation, the 2s and 3s only
map to 3 dimensions in degree 1. This implies they generate a module of
dimension 3α1 + 2α2 + α3, which violates stability (because of the smaller
ratio of 2’s to 3’s).

6.2. The case s = 2, t = 1 revisited.

Example 6.2. In this case the smallest root on our list where the number of paths
satisfying both Theorems 1.1 and 5.1 is not the root multiplicity is 6α1+5α2+3α3.
Somewhat surprisingly, the correct multiplicity in 30 but there are 33 paths in this
case. So, the first error is off by 3! The three paths that pass all the conditions but
do not correspond to stable irreducible components are

11221123123123(6.3)

11212123123123(6.4)

11122211233123(6.5)
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To see why these do not correspond to stable components, consider (6.3). Look
at the quotient module corresponding to the right subword 3123123 (in red). The
map 1x3 has a 2 dimensional image by the definition of the socle filtration, so the
preprojective relation 3x1 ◦ 1x3 = 0 implies that the map 3x1 is the zero map on
this quotient. So, there is a quotient module Q isomorphic to C3

3 (which is in fact
all of C), and a submodule P with data

11221121212.

Now, the sub-quotient marked in bold implies the existence of a submodule P ′ with
data

11221212

Denote the span of these four 1s by W . Then the map 1x3 : Q → A/W has a one
dimensional kernel K by dimension count. Then P ′ ⊕K violates stability.

The arguments for the other two cases are very similar: in both cases, there
is a quotient Q isomorphic to C3

3 by essentially the same argument, and then the
argument that this implies a stability violation proceeds in the same way.

One may ask, why is the first example off by three? It seems there is no good
reason, as there are smaller examples where the error is 1 if we look at roots which
are not minimal, in that they can be reflected to smaller roots. Our method works
just fine for such roots, although considering them directly is usually redundant.
but let’s consider such a case.

Example 6.6. Take s = 2, t = 1 and the root 4α1 + 3α2 + 3α3. This can be
reflected to 4α1 + 3α2 + α3 and then to 3α1 + 3α2 + α3, a root which we know
has multiplicity 3. However, let’s do the calculation with our methods directly on
4α1 + 3α2 + 3α3. Then a total of 5 paths pass the conditions in Theorem 1.1:

1 1 2 3 3 1 2 1 2 3
1 1 1 2 2 3 3 1 2 3
1 1 1 1 2 2 2 3 3 3
1 1 2 3 1 2 3 1 2 3
1 1 2 3 3 1 1 2 2 3

The path 1123311223 is ruled out by Theorem 5.1 with i = j = 1. Here

• nAij = 2 which is just a2,
• nBij = 1 since min{b1, a2 − 2b2} = b1 = 1,
• nCij = 1 because min{c1, a2 − c2} = a2 − c2 = 1,
• ãij = 2nBij + nCij − nAij = 2 + 1− 2 = 1,

• b̃ij = nBij = 1,
• c̃ij = nCij = 1,

where the last three are simpler than in general because i = 1 so we are at the
beginning of the path. The condition says

ãij

2b̃ij + c̃ij
≥ 4

2× 3 + 3
,

which gives 1
3 ≥ 4

9 , which is false.
The other path which does not correspond to a stable component is 1123123123.

One can see that this is not stable by the same argument as in Example 6.2, and
in fact the situation is a little simpler here. Specifically:
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• In the quotient module corresponding to 123123 the map 1x3 must be injec-
tive by the definition of the socle filtration. By the pre-projective relation
this implies that the map 3x1 is actually trivial on the whole module, so C
is in fact a quotient module.

• There is then a submodule with data 1121212. By a reflection the sub-
quotient in bold implies the existence of a sub-module S with data 1212.

• Let Q = A′ ⊕ B′ ⊕ C be the quotient by this submodule. Since C is
three dimensional and A′ is only 2 dimensional, the map 1x3 on Q has a
one-dimensional kernel K.

• S ⊕ K is then a submodule of dimension 2α1 + 2α2 + α3, which violates
stability.

The issue causing the counter-examples in this section seem somewhat distinct from
those used in Theorems 1.1 and 5.1.

7. Additional local conditions

In the rank two case studied in [Tin21], we believe we listed all “local” conditions,
meaning our conditions catch all sub-words which by themselves imply stability
fails. In the rank 3 cases studied here this is not the case, which implies our
estimates should diverge exponentially from the actual multiplicities. Here are
some examples demonstrating the issues, all in the case s = 2, t = 1.

Example 7.1. A word of the form

...112211221112...

does not (depending on what comes before or after) immediately fail any of the
conditions. But the segment colored red corresponds to the sub-quotient Q with
socle data 22111. By the preprojective relation and dimension counts this implies
a submodule with data

...1122122.

Now the 1 in the sub-quotient Q′ indicated in red has no freedom to map to the 2s
on the level below, which contradicts this being the socle filtration. Thus no words
of this form correspond to stable components (or even to unstable components).
Note that if the word was of the form

...112311221112...

instead there would have been no problem.

Example 7.2. One can of course find conditions to catch Example 7.1. But one
can just find worse examples. For instance, consider string data of the form

....1?27172717271727182?...

Then the 2718 at the right implies a 1627 then a 2516 and so on down to a 212

subquotient, and then the two has no freedom to map to any 1s, causing a contra-
diction. But

....1?273172717271727182?...

would not have had this problem. So we need to consider many steps in the path
to find the problem.
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Example 7.3. Another issue arises because, in rank 3, there are elements of the
positive root lattice of negative norm which are not imaginary roots. For instance,
consider the word

13022031011522036133240320.

This satisfies all of our conditions, including the refined conditions in Theorem 5.1
below. But the sub-quotient 22036133 implies that this will not be stable. To see
why, notice that the 22036 only has freedom to map to 13 dimensions, so this implies
the existence of a sub-quotient at the next step down with data 113−e122036 for some
e1 ≥ 0. The 113−e1 then has the freedom to map to only 6−2e1 dimensions in degree
2 and 7− e1 in degree 3, giving a sub-quotient with data 26−2e1−e237−e1−e3113−e1

for some e2, e3 ≥ 0. Then at the next step the 26−2e1−e237−e1−e3 can map to a
module in degree one of dimension at most 6−4e1−2e2−e3, which in particular is
less then 7− e1 − e3. So, at this level the map 1x3 has a kernel, which contradicts
the definition of the socle filtration.

The issue here is related to the fact that β = 33α1 + 20α2 + 6α3 has

s2s3s1s2s3s1β = 6α1 + 6α2 − α3.

The fact that we have not been able to rule this out using our ratio conditions is
related to the fact that |β|2 = −110 < 0 but β is not an imaginary root since it
reflects to a weight with negative coefficients. In this case, if one keeps applying
s2s3s1 more times the coefficients all become positive again. Our ratio condition is
really about ensuring positive coefficients in a limit, so it misses the problem.

8. Computational data

In the cases s = t = 2 and s = 2, t = 1 we computed our estimates in many
examples using Python. The code can be found at [Chan]. The actual multiplicities
for s = 2, t = 1 can be found in [Kac90, Chapter 11]. The multiplicities in the case
s = t = 2 were calculated by Alex Feingold using mathematica code originally
written by Stephen Miller implementing the Peterson algorithm to calculate the
multiplicities, see [Pet83]. The results are given in Figures 8.2 and 8.1.

Note that, for the case s = t = 2, the symmetry of the Dynkin diagram implies
that for any a, k, ℓ, the roots aα1 + kα2 + ℓα3 and aα1 + ℓα2 + kα3 have the same
multiplicity. But our method breaks this symmetry and does not always give the
same estimates in these cases. See for example the data for the roots 9α1+8α2+7α3

and 9α1 + 7α2 + 8α3. The symmetry breaking only comes into effect when a and
k + ℓ are not relatively prime, so that Dyck paths that touch the diagonal are
possible.

In both tables, we only lists roots which are minimal in the sense that they
cannot be reflected via the Weyl group to roots with smaller coefficients. As in
Example 6.6 some other cases are non-the-less interesting.
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Case:
(A,B,C)

Actual root multi-
plicity

Estimate with The-
orems 1.1 and 5.1

Estimate with just
Theorem 1.1

(1, 1, 1) 1 1 1
(2, 1, 1) 2 2 2
(2, 2, 1) 3 3 3
(2, 1, 2) 3 3 3
(3, 2, 1) 4 4 5
(3, 1, 2) 4 4 5
(3, 3, 1) 5 5 5
(3, 1, 3) 5 5 5
(4, 3, 1) 7 7 9
(4, 1, 3) 7 7 11
(4, 4, 1) 10 10 10
(4, 1, 4) 10 10 10
(3, 2, 2) 10 10 10
(3, 3, 2) 12 12 12
(3, 2, 3) 12 12 12
(5, 4, 1) 13 13 19
(5, 1, 4) 13 13 25
(5, 5, 1) 16 16 18
(5, 1, 5) 16 16 18
(6, 5, 1) 21 22* 35
(6, 1, 5) 21 21 35
(6, 6, 1) 28 28 34
(6, 1, 6) 28 28 34
(4, 3, 2) 25 25 25
(4, 2, 3) 25 25 25
(7, 6, 1) 35 36* 68
(7, 1, 6) 35 35 107
(7, 7, 1) 43 43 61
(7, 1, 7) 43 43 61
(8, 7, 1) 55 58 124
(8, 1, 7) 55 56* 212
(4, 3, 3) 46 46 46
(4, 4, 3) 58 58 58
(4, 3, 4) 58 58 58
(5, 4, 2) 61 61 64
(5, 2, 4) 61 61 64
(8, 8, 1) 70 70 114
(8, 1, 8) 70 70 114

(10, 7, 6) 251656 251911 284878
(9, 8, 7) 273917 275221 281488
(9, 7, 8) 273917 275046 281363
(9, 9, 7) 303947 306371 311847
(9, 7, 9) 303947 306371 311847

Figure 8.1. Root multiplicities and our estimates for s = t = 2.
The table begins by systematically looking at small roots, where
the three cases where are best estimate does not agree with the
actual multiplicity are marked with a *. We then jumps to some
of the largest roots we were able to work with.
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Case:
(A,B,C)

Actual multiplicity Bound using Theo-
rems 1.1 and 5.1

Bound using just
Theorem 1.1

(2, 2, 1) 2 2 2
(3, 3, 1) 3 3 3
(4, 3, 2) 5 5 6
(4, 4, 1) 5 5 6
(5, 5, 1) 7 7 9
(5, 4, 2) 11 11 15
(6, 6, 1) 11 11 16
(5, 5, 2) 15 15 18
(7, 7, 1) 15 15 24
(6, 5, 2) 22 22 34
(8, 8, 1) 22 22 39
(6, 5, 3) 30 33 46
(9, 9, 1) 30 30 61
(7, 6, 2) 42 42 72
(10, 10, 1) 42 42 96
(7, 7, 2) 56 56 79
(11, 11, 1) 56 56 148
(7, 6, 3) 77 83 121
(8, 7, 2) 77 77 146
(12, 12, 1) 77 77 233
(7, 7, 3) 101 101 134
(9, 8, 2) 135 137 283
(8, 7, 3) 176 187 296
(9, 9, 2) 176 176 287
(8, 7, 4) 231 253 379
(8, 8, 3) 231 233 316
(10, 9, 2) 231 235 531
(9, 7, 4) 297 317 725
(9, 8, 3) 385 410 682
(11, 10, 2) 385 399 974
(9, 8, 3) 385 410 682
(11, 11, 2) 490 499 934
(9, 8, 4) 627 674 1062
(9, 9, 4) 792 807 1107
(10, 9, 3) 792 839 1498
(10, 8, 5) 1002 1218 2335
(10, 9, 4) 1574 1656 2754
(11, 10, 3) 1574 1673 3161
(10, 9, 5) 1957 2167 3404
(11, 9, 4) 1957 2029 5113
(11, 11, 3) 1956 2000 3134
(11, 9, 5) 3007 3492 6942
(11, 10, 4) 3713 3912 6776

Figure 8.2. Root Multiplicity Data: s=2, t=1.
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Rouquier algebras. Compositio Math. 152 (2016) 1648–1696. arXiv:1210.6921

Department of Mathematics and Statistics, Loyola University, Chicago, IL

Email address: pchan2@luc.edu

Department of Mathematics and Statistics, Loyola University, Chicago, IL

Email address: ptingley@luc.edu

http://arxiv.org/abs/1501.02026
http://arxiv.org/abs/q-alg/9606009
http://arxiv.org/abs/1606.01876
http://arxiv.org/abs/1910.04637
http://arxiv.org/abs/1210.6921

	1. Introduction
	2. Background
	2.1. Kac-Moody algebras and B(-)
	2.2. The crystal B(-)
	2.3. Quiver varieties 
	2.4. Stability conditions
	2.5. String data
	2.6. Stablilty and root multiplicities

	3. Rank three and proof of Theorem 1.1
	3.1. Setup
	3.2. Two lemmas about root space
	3.3. Specialized notation
	3.4. Proof of the main theorem

	4. Examples
	4.1. The case s=2,t=1 
	4.2. The case s=t=2

	5. Refined conditions
	6. More examples
	6.1. The case s=t=2 revisited
	6.2. The case s=2, t=1 revisited

	7. Additional local conditions
	8. Computational data 
	References

