Problem 1. For $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $p \in(0, \infty)$, define

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p} .
$$

So, for example, $\|x\|_{1 / 2}=\left(\sqrt{\left|x_{1}\right|}+\sqrt{\left|x_{2}\right|}\right)^{2}$. Also, for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, define

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}
$$

(a) Check if $\|\cdot\|_{1 / 2},\|\cdot\|_{2}$, and $\|\cdot\|_{\infty}$ are norms on $\mathbb{R}^{2}$. If yes, prove it. If no, give an example showing why not.
(b) For $p=1 / 2,2, \infty$, sketch the unit sphere $\left\{x \in \mathbb{R}^{2} \mid\|x\|_{p}=1\right\}$.
(c) Show that, for every $x \in \mathbb{R}^{2}, \lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}$.
(d) Find $m, M \in \mathbb{R}$ so that, for every $x \in \mathbb{R}^{2}$,

$$
m\|x\|_{2} \leq\|x\|_{\infty} \leq M\|x\|_{2}
$$

Repeat with $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$.
(e) Let $\mathbb{B}_{\infty}=\left\{x \in \mathbb{R}^{2} \mid\|x\|_{\infty} \leq 1\right\}$ be the unit ball in $\mathbb{R}^{2}$ centered at 0 for the norm $\|\cdot\|_{\infty}$. Let $P$ be "the projection" from $\mathbb{R}^{2}$ onto $\mathbb{B}_{\infty}$, i.e., for each $x \in \mathbb{R}^{2}$ let $P(x)$ be the point $y$ that minimizes or the set of points $y$ that minimize $\|x-y\|_{\infty}$ over all $y \in \mathbb{B}_{\infty}$. Find $P((1.5,0)), P((2,2)), P((2,1.5)), P((3,0))$

Problem 2. You know the following facts:
A: For every sequence of points in $[a, b]$ there exists a convergent subsequence.
B: $f:[a, b] \rightarrow \mathbb{R}$ is continuous if and only if for every convergent sequence of points $x_{i} \in[a, b]$, one has

$$
\lim _{i \rightarrow \infty} f\left(x_{i}\right)=f\left(\lim _{i \rightarrow \infty} x_{i}\right)
$$

C: Given a bounded set $S \subset \mathbb{R}$, if $s=\sup S$ then for every $\varepsilon>0$ there exists $x \in S$ such that $x>s-\varepsilon$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Using the facts above, prove the following
(a) $f$ is bounded above: there exists $K \in \mathbb{R}$ so that, for every $x \in[a, b], f(x)<K$.
(b) $f$ attains its maximum on $[a, b]$ : there exists $x \in[a, b]$ so that $f(x)=\sup \{f(x) \mid x \in[a, b]\}$.
(c) $f$ is uniformly continuous: for every $\varepsilon>0$ there exists $\delta>0$ so that, for every $x, y \in[a, b]$ with $|x-y|<\delta$ one has $|f(x)-f(y)|<\varepsilon$.

More problems will come soon...

