HW 1

Problem 1. For $x = (x_1, x_2) \in \mathbb{R}^2$ and $p \in (0, \infty)$, define

 $||x||_p = (|x_1|^p + |x_2|^p)^{1/p}.$

So, for example, $||x||_{1/2} = \left(\sqrt{|x_1|} + \sqrt{|x_2|}\right)^2$. Also, for $x = (x_1, x_2) \in \mathbb{R}^2$, define

 $||x||_{\infty} = \max\{|x_1|, |x_2|\}.$

- (a) Check if $\|\cdot\|_{1/2}$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$ are norms on \mathbb{R}^2 . If yes, prove it. If no, give an example showing why not.
- (b) For $p = 1/2, 2, \infty$, sketch the unit sphere $\{x \in \mathbb{R}^2 \mid ||x||_p = 1\}$.
- (c) Show that, for every $x \in \mathbb{R}^2$, $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.
- (d) Find $m, M \in \mathbb{R}$ so that, for every $x \in \mathbb{R}^2$,

$$m\|x\|_{2} \le \|x\|_{\infty} \le M\|x\|_{2}$$

Repeat with $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$.

(e) Let $\mathbb{B}_{\infty} = \{x \in \mathbb{R}^2 \mid ||x||_{\infty} \leq 1\}$ be the unit ball in \mathbb{R}^2 centered at 0 for the norm $|| \cdot ||_{\infty}$. Let P be "the projection" from \mathbb{R}^2 onto \mathbb{B}_{∞} , i.e., for each $x \in \mathbb{R}^2$ let P(x) be the point y that minimizes or the set of points y that minimize $||x - y||_{\infty}$ over all $y \in \mathbb{B}_{\infty}$. Find P((1.5, 0)), P((2, 2)), P((2, 1.5)), P((3, 0))

Problem 2. You know the following facts:

- A: For every sequence of points in [a, b] there exists a convergent subsequence.
- B: $f: [a, b] \to \mathbb{R}$ is continuous if and only if for every convergent sequence of points $x_i \in [a, b]$, one has

$$\lim_{i \to \infty} f(x_i) = f\left(\lim_{i \to \infty} x_i\right).$$

C: Given a bounded set $S \subset \mathbb{R}$, if $s = \sup S$ then for every $\varepsilon > 0$ there exists $x \in S$ such that $x > s - \varepsilon$.

Let $f:[a,b] \to \mathbb{R}$ be continuous. Using the facts above, prove the following

- (a) f is bounded above: there exists $K \in \mathbb{R}$ so that, for every $x \in [a, b]$, f(x) < K.
- (b) f attains its maximum on [a, b]: there exists $x \in [a, b]$ so that $f(x) = \sup\{f(x) \mid x \in [a, b]\}$.
- (c) f is uniformly continuous: for every $\varepsilon > 0$ there exists $\delta > 0$ so that, for every $x, y \in [a, b]$ with $|x y| < \delta$ one has $|f(x) f(y)| < \varepsilon$.

More problems will come soon...