Read ASAP: MacCluer Chapter 1 (think \mathbb{R} when you see \mathbb{C} , and skip, if you wish, examples that talk about analytic functions). Recommended read: Bachman and Narici, Chapters 1, 2, 3.

Book Problems. (MacCluer) 1.2, 1.3; 1.5; 1.10 a,b;

Problem 1. Show that the space l^{∞} of all sequences $x = \{x_i\}_{i=1}^{\infty}$ such that $\sup_{i \in \mathbb{N}} |x_i| < \infty$ with the norm $||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$ is a Banach space.

Problem 2. Consider a real Banach space X with norm $\|\cdot\|$.

- (a) Show that the map $x \mapsto ||x||$ from X to \mathbb{R} is continuous. Is it uniformly continuous?
- (b) Show that the maps $(x, y) \mapsto x + y$ from $X \times X$ to X and $(c, x) \mapsto cx$ from $\mathbb{R} \times X$ to X are continuous. (On $X \times X$, take the norm ||(x, y)|| = ||x|| + ||y||. On $\mathbb{R} \times X$, take the norm ||(c, x)|| = |c| + ||x||.)