Book Problems. (MacCluer) 3.11; 3.12; 3.14; 3.21;

Problem 1. Recall: in l_1 , x_n converges weakly to x if, for every $y \in l^{\infty}$, $\lim_{n \to \infty} \langle x_n, y \rangle = \langle x, y \rangle$, where $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$. Prove that, in l^1 , x_n converges weakly to x if and only if $||x_n - x|| \to 0$.

Problem 2. Let X = Y = C[0, 1]. A mapping $T : X \to Y$ is called *causal* if, for every $\tau \in [0, 1]$ and every $f, g \in X$, if f(t) = g(t) for every $t \in [0, \tau]$, then Tf(t) = Tg(t) for every $t \in [0, \tau]$.

- Show that T given by $Tf(t) = (f(t))^2$ is causal.
- Show that T given by Tf(t) = f(1-t) is not causal.
- Find a couple of nontrivial and significantly different from one another examples of causal mappings from X to Y, and a couple of nontrivial and significantly different from one another examples of not causal mappings from X to Y. (An example of a causal mapping like $Tf(t) = (f(t))^3$ is neither nontrivial nor sufficiently different from what you see above.)

Problem 3. Let X be the normed vector space $C^1[0,1]$ of continuously differentiable functions on [0,1], with the sup norm $||f|| = \max_{t \in [0,1]} |f(t)|$. Find a sequence of bounded linear functionals $T_n : X \to \mathbb{R}$ so that, for every $f \in X$, $\sup_{n \in \mathbb{N}} |T_n f| < \infty$ but $\sup_{n \in \mathbb{N}} ||T_n|| = \infty$. (This will illustrate that the PUB fails if X is not complete.)