Book Problems. (MacCluer) 4.5 and Read 4.1, 4.2

Problem 1. Let X be a Banach space with norm $\|\cdot\|$. Prove that, for any sequence $\{x_n\}$ in X, if $\sum_{n=1}^{\infty} \|x_n\| < \infty$ then $\lim_{k \to \infty} \sum_{n=1}^{k} x_n$ exists.

Problem 2. Let X be the Banach space C[0,1] with the supremum norm. Let

$$M = \{ f \in X \mid f(0) = 0 \}.$$

Show that M is closed. Find an explicit formula for the quotient norm ||[f]|| for $[f] \in X/M$. Find an isometric isomorphism from \mathbb{R} to X/M.

Problem 3. Let X be the vector space C[0,1] with the norm $||f||_1 = \int_0^1 |f(t)| dt$. Let

$$M = \{ f \in X \mid f(0) = 0 \}.$$

Show that M is not closed. Show that the "quotient norm" $\inf\{\|f-m\|_1\,|\,m\in M\}$ is not a norm on X/M.

Problem 4. Prove Hölder's inequality:

$$\int_0^1 |f(t)g(t)| \, dt \le ||f||_p ||g||_q,$$

where $f \in L^p[0,1]$, $g \in L^q[0,1]$, and 1/p + 1/q = 1. (It may help to recall how we did this in l^p .)