
Loyola University Chicago
Math 161, Spring 2010

Final Exam

Name (print): Signature:

Please do not start working until instructed to do so.

You have 2 hours.

No calculators, iPhone’s, laptops, or any other devices that do more than show time.

You must show your work to receive full credit.

You may use one double-sided 8.5 by 11 sheet of handwritten (by you) notes.
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Total.



Problem 1.(32 points total) Find the following limits, derivatives, and integrals:

a.(4 points) lim
x→−∞

x3 − 5x7 + 8x

x4 + 9 + 15x7

Solution: divide numerator and denominator by x7:

lim
x→−∞

x3 − 5x7 + 8x

x4 + 9 + 15x7
= lim

x→−∞

1
x4 − 5 + 8 1

x6

1
x2 + 9

x7 + 15
=
−5
15

= −1
3

b.(4 points)
d

dx

(
cos(5x2) + 3x lnx

)6.

Solution:

d

dx

(
cos(5x2) + 3x lnx

)6 = 6
(
cos(5x2) + 3x lnx

)5
(
− sin(5x2)10x + ln 3 3x lnx + 3x 1

x

)

c.(4 points) lim
x→∞

1 +
√

x− 3
x

.

Solution:

lim
x→∞

1 +
√

x− 3
x

= lim
x→∞

1
x

+
√

x− 3
x

= lim
x→∞

1
x

+

√
1
x
− 3

x2
= 0

Alternatively, use L’Hopitals rule:

lim
x→∞

1 +
√

x− 3
x

= lim
x→∞

0 + 1
2
√

x−3

1
= lim

x→∞

1
2
√

x− 3
= 0

d.(4 points) lim
t→0−

1 +
2
3
√

t

Solution:
lim

t→0−
1 +

2
3
√

t
= 1 + lim

t→0−

2
3
√

t
= −∞

because when t → 0−, 3
√

t → 0 while 3
√

t < 0.



e.(4 points)
d

dx

∫ tan−1(x)

ex

(x + 1)777 dt

Solution: Fundamental Theorem of Calculus and chain rule

d

dx

∫ tan−1(x)

ex

(x + 1)777 dt =
(
tan−1(x) + 1

)777 − (ex + 1)777 ex

f.(4 points)
∫ (

5√
1− x2

− x7 + 11
)

dx

Solution: ∫ (
5√

1− x2
− x7 + 11

)
dx = 5 sin−1(x)− 1

8
x8 + 11x + C

g.(4 points)
∫ 6

0

(
x +

√
36− x2

)
dx.

Solution:∫ 6

0

(
x +

√
36− x2

)
dx =

∫ 6

0
x dx +

∫ 6

0

√
36− x2 dx =

1
2
6 · 6 +

1
4
π62 = 18 + 9π

h.(4 points)
∫

x√
x + 7

dx

Solution: set u = x + 7, so that du = dx and x = u− 7. Get∫
x√

x + 7
dx =

∫
u− 7√

u
du =

∫
u1/2−7u−1/2 du =

2
3
u3/2−14u1/2+C =

2
3
(x+7)3/2−14(x+7)1/2+C



Problem 2.(8 points total) Use the definition of the derivative to find f ′(x) when f(x) =
√

x2 + 1.

Solution:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

√
(x + h)2 + 1−

√
x2 + 1

h

= lim
h→0

(x + h)2 + 1− x2 − 1

h
(√

(x + h)2 + 1 +
√

x2 + 1
) = lim

h→0

x2 + 2xh + h2 + 1− x2 − 1

h
(√

(x + h)2 + 1 +
√

x2 + 1
)

= lim
h→0

2xh + h2

h
(√

(x + h)2 + 1 +
√

x2 + 1
) = lim

h→0

2x + h√
(x + h)2 + 1 +

√
x2 + 1

=
2x

2
√

x2 + 1
=

x√
x2 + 1

Problem 3.(8 points total) Find all horizontal and all vertical asymptotes of the function

f(x) =
2− ex

2 + ex

Solution: there is no vertical asymptotes because the function is continuous, and that is because
2 + ex is always positive, in fact always greater than 2. For horizontal asymptotes, do this:

lim
x→−∞

2− ex

2 + ex
=

2− limx→−∞ ex

2 + limx→−∞ ex
=

2− 0
2 + 0

= 1

lim
x→∞

2− ex

2 + ex
= lim

x→∞

2
ex − 1
2
ex + 1

=
−1
1

= −1

There are two horizontal asymptotes: y = 1 and y = −1.



Problem 4.(14 points total) Let g(x) =
1
4
x4 − x2.

a.(6 pts) Find the critical points for this function. For each critical point, determine whether it is a
local minimum, local maximum, or neither.

Solution: the function is differentiable so the only critical points are where f ′(x) = 0.

f ′(x) = x3 − 2x = x(x2 − 2) = x(x−
√

2)(x +
√

2)

so the critical points are x = 0, x =
√

2, x = −
√

2. One way to check if they are local minima or
maxima is to look at the second derivative.

f ′′(x) = 3x2 − 2

Then f(0) = −2 < 0, f(
√

2) = f(−
√

2) = 4 > 0. So x = 0 is a local maximum, x =
√

2, x = −
√

2
are local minima.

b.(4 pts) Identify the intervals on which g is concave up and concave down.

Solution:
f ′′(x) = 3(x2 − 2/3) = 3(x−

√
2/3)(x +

√
2/3)

Then f ′′(x) < 0 in (−
√

2/3,
√

2/3); f ′′(x) > 0 on (−∞,−
√

2/3) and (
√

2/3,∞). Consequently, f
is concave down on (−

√
2/3,

√
2/3); f is concave up on (−∞,−

√
2/3) and (

√
2/3,∞).

c.(4 pts) Find the absolute minimum and the absolute maximum of g(x) on the interval [−1, 3].

Solution: there are two critical points in [0, 3]: x = 0 and x =
√

2. Compare values at these
points and at the endpoints:

f(−1) = −3
4
, f(0) = 0, f(

√
2) = −1, f(3) = 11

1
4

The absolute minimum is at x =
√

2, the absolute maximum is at x = 3.



Problem 5.(8 points) Consider the function

f(x) = lnx− x.

a.(4 pts) Write the left-endpoint Riemann sum for this function on the interval [1, 3] with n = 4
subintervals. (You do not need to evaluate the sum.)

Solution: ∆x = 3−1
4 = .5, then x0 = 1, x1 = 1.5, x2 = 2, x3 = 2.5, x4 = 3. Left-endpoint

Riemann sum is

∆x(f(x0) + f(x1) + f(x2) + f(x3)) = 0.5 (ln 1− 1 ln 1.5− 1.5 + ln 2− 2 + ln 2.5− 2.5)

b.(4 pts) Circle the correct statement and provide a brief explanation of your answer.

• The left-endpoint Riemann sum is an underestimate of
∫ 3
1 lnx− x dx.

• The left-endpoint Riemann sum is an overestimate of
∫ 3
1 lnx− x dx.

• Neither of the two statements above is true.

Solution: check if the funciton is decreasing or increasing or neither on [1, 3].

f ′(x) =
1
x
− 1

and 1
x − 1 < 0 because 1

x < 1, 1 < x when x is in (1, 3). So f is decreasing, hence the left-endpoint
sum is an overestimate.



Problem 6.(10 points) Laws of physics determine that the acceleration of a rocket cart is given
by the formula

a(t) = 2t− 5

for t ≥ 0. The velocity of the rocket cart was measured at t = 0 to be v(t) = 6 meters/second.

a.(5 pts) Find the formula for the velocity of the rocket cart at time t ≥ 0.

Solution: a(t) = v′(t) so

v(t) =
∫

a(t) dt =
∫

2t− 5 dt = t2 − 5t + C

Determine C using v(0) = 6: v(0) = 02 − 5 · 0 + C = 6, so C = 6. Thus

v(t) = t2 − 5t + 6

b.(5 pts) Find the total distance traveled by the cart between t = 0 and t = 3.

Solution: v(t) = t2 − 5t + 6 = (t− 2)(t− 3) so v(t) ≥ 0 on [0, 2] and v(t) < 0 on [2, 3]. Then the
total distance is∫ 3

0
|v(t)| dt =

∫ 2

0
v(t) dt +

∫ 3

2
−v(t) dt =

∫ 2

0
t2 − 5t + 6 dt−

∫ 3

2
t2 − 5t + 6 dt =

29
6



Problem 7.(10 points) A small helium balloon is rising at the rate of 8 ft/sec, a horizontal distance
of 12 feet from a 20 ft. lamppost. At what rate is the shadow of the balloon moving along the ground
when the balloon is 5 feet above the ground?

Solution: let h be the height of the balloon. Let x be the distance from the lamppost to the shadow
of the balloon. We know dh/dt = 5, we need to find dx/dt. Use similar triangles to relate x to h:

20
x

=
h

x− 12
so x =

240
20− h

Differentiate with respect to t, get

dx

dt
= − 240

(20− h)2

(
−dh

dt

)
Plug in h = 5, dh/dt = 5, get

dx

dt
=

128
15



Problem 8.(10 points total) There are two points on the ellipse

5x2 − 6xy + 5y2 = 4

with the x-coordinate equal to 1. Find where the tangent lines to the ellipse, at these two points,
intersect.

Solution: set x = 1, get 5 − 6y + 5y2 = 4, so 5y2 − 6y + 1 = (5y − 1)(y − 1) = 0, so y = 1 or
y = 1/5. The two points on the ellipse are (1, 1) and (1, 1/5). Differentiate implicitly, get

10x− 6y − 6xy′ + 10yy′ = 0

At the point (1, 1) get
10− 6− 6y′ + 10y′ = 0, 4 = −4y′, y′ = −1

and the tangent line at (1, 1) is y − 1 = −1(x− 1), so y = −x + 2. At the point (1, 1/5) get

10− 6/5− 6y′ + 10/5y′ = 0, 8
4
5

= 4y′, y′ = 2
1
5

and the tangent line at (1, 1/5) is y − 1/5 = 21
5(x − 1), so y = 21

5x − 2. Intersect the two tangent
lines to get

−x + 2 = 2
1
5
x− 2, 4 = 3

1
5
x, x = 5/4

Then y = −x + 2 = −5/4 + 2 = 3/4. The point where the tangent lines intersect is then

(5/4, 3/4)


