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You have 75 minutes.
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Problem 1.

Problem 2.

Problem 3.

Problem 4.

Problem 5.

Total.



Problem 1.(20 points) Find the following limits and integrals. Put a box around your final answer .

a.(4 points) lim
x→∞

ln(2x + 4)
7x + 11

Solution: this is an indeterminate form of the ∞
∞ kind, use L’Hopital rule:

lim
x→∞

ln(2x + 4)
7x + 11

= lim
x→∞

2
2x+4

7
= lim

x→∞

2
7(2x + 4)

= 0

b.(4 points) lim
x→∞

(
1 +

4
x

)3x

Solution: recall that limy→∞

(
1 + 1

y

)y
= e and use it below:

lim
x→∞

(
1 +

4
x

)3x

= lim
x→∞

(
1 +

1
x
4

)3x

= lim
x→∞

(
1 +

1
x
4

)12x
4

=

(
lim

x→∞

(
1 +

1
x
4

)x
4

)12

= e12

Another way to solve this is to do this

lim
x→∞

(
1 +

4
x

)3x

= eln limx→∞(1+ 4
x)3x

= elimx→∞ ln(1+ 4
x)3x

= elimx→∞ 3x ln(1+ 4
x) = e

limx→∞
ln(1+ 4

x)
1
3x

and then use L’Hopital’s rule.

c.(4 points) lim
x→0

tan(πx)
ln(1 + x)

Solution:

lim
x→0

tan(πx)
ln(1 + x)

= lim
x→0

π
cos2(πx)

1
1+x

= π

d.(4 points)
∫

3x5 − 2x + 1 dx

Solution: ∫
3x5 − 2x + 1 dx =

1
2
x6 − x2 + x + C

e.(4 points)
∫

e−4x +
3

1 + x2
dx

Solution: ∫
e−4x +

3
1 + x2

dx = −1
4
e−4x + 3 tan−1(x) + C



Problem 2.(10 points) Use Newton’s method to approximate the value of
√

12. Pick the initial
approximation x1 reasonably. Then find the second approximation x2 and the third approximation
x3. You do not need to simplify the second approximation.

Solution: we need to find x which equals
√

12. Hence x =
√

12, x2 = 12, x2− 12 = 0, so in other
words, we need to find a root of f(x) = 0 where f(x) = x2− 12. A reasonable initial guess is x0 = 3,
another reasonable guess is x0 = 4. We have f ′(x) = 2x and then

x1 = x0 −
f(x0)
f(x0)

= 3− 32 − 12
2 · 3

= 3
1
2

x2 = x1 −
f(x1)
f(x1)

= 3−
(
31

2

)2 − 12
2 ·
(
31

2

)

Problem 3.(10 points) Find horizontal and vertical asymptotes (if any exist), critical points (if
any exist), and classify the critical points as local/global minima/maxima/neither, for the function

f(x) =
ex

1 + x2

Solution: No vertical asymptotes because the denominator is always greater or equal than 1 (so
positive, never 0). To look for horizontal asymptotes:

lim
x→−∞

ex

1 + x2
=

0
∞

= 0, lim
x→∞

ex

1 + x2
= lim

x→∞

ex

2x
= lim

x→∞

ex

2
= ∞

Hence y = 0 is a horizontal asymptote. To find critical points:

f ′(x) =
ex(1 + x2)− ex2x

(1 + x2)2
=

ex(x− 1)2

(1 + x2)2

and f ′(x) = 0 when x = 1. A closer look at the derivative shows that f ′(x) ≥ 0 for all x, and so f
is nondecreasing. Hence x = 1 is not a local/global min/max. It is just a boring critical point.



Problem 4.(10 points) You are designing a rectangular poster to contain 50 square inches of
printing with a 4 inch margin at the top and bottom and a 2 inch margin at each side. What overall
dimensions will minimize the amount of paper used?

Solution: Let x be the height of the whole poster, let y be the width of the whole poster. We need
to minimize A = xy. Printed area being 50 means that (x− 8)(y − 4) = 50, so y = 4 + 50

x−8 . Then

A(x) = x

(
4 +

50
x− 8

)
Need to minimize this function over x > 8.

A′(x) = 4− 400
(x− 8)2

, so A′(x) = 0 gives x = 18.

Is this really a minimum?

A′′(x) =
800

(x− 8)3
> 0

so the function is concave up, so x = 18 is the absolute minimum. When x = 18, y = 9.

Problem 5.(10 points) Suppose that an ostrich 5 ft tall is walking at a speed of 4 ft/sec directly
towards a light 10 ft high. How fast is the tip of the ostrich’s shadow moving along the ground?

Solution: Let x be the distance of ostrich from light. We know dx
dt = −4. Let y be the distance of

the tip of the shadow from light. We need dy
dy . Similar triangles say

y − x

5
=

y

10

and so y = 2x. Then
dy

dt
= 2

dx

dt
= 24 = 8


