Loyola University Chicago Midterm 2 Sample
Math 161, Fall 2010

Name (print): Signature:

Please do not start working until instructed to do so.
You have 75 minutes.
You must show your work to receive full credit.
No calculators.

You may use one double-sided 8.5 by 11 sheet of handwritten (by you) notes.
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Problem 1. (20 points) Find the following limits and integrals. Put a|box around your final answer |.
_ . In(2z +4)

. t lim —————
a. (4 points) A =

Solution: this is an indeterminate form of the 52 kind, use L’Hopital rule:
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Solution: recall that lim, (1 + 5) = ¢ and use it below
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Another way to solve this is to do this
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and then use L’Hopital’s rule.
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Solution:

4 4 3tan~!(z) + C



Problem 2.(10 points) Use Newton’s method to approximate the value of v/12. Pick the initial
approximation z; reasonably. Then find the second approximation xo and the third approximation
3. You do not need to simplify the second approximation.

Solution: we need to find x which equals /12. Hence x = /12, 2> =12, 22 — 12 =0, so in other
words, we need to find a root of f(x) = 0 where f(x) = 2% —12. A reasonable initial guess is o = 3,
another reasonable guess is xg = 4. We have f'(x) = 2z and then
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Problem 3.(10 points) Find horizontal and vertical asymptotes (if any exist), critical points (if
any exist), and classify the critical points as local/global minima/maxima/neither, for the function

f(z)
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Solution: No vertical asymptotes because the demominator is always greater or equal than 1 (so
positive, never 0). To look for horizontal asymptotes:
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Hence y = 0 is a horizontal asymptote. To find critical points:
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and f'(x) =0 when © = 1. A closer look at the derivative shows that f'(x) > 0 for all z, and so f
is nondecreasing. Hence x = 1 is not a local/global min/mazx. It is just a boring critical point.



Problem 4.(10 points) You are designing a rectangular poster to contain 50 square inches of
printing with a 4 inch margin at the top and bottom and a 2 inch margin at each side. What overall
dimensions will minimize the amount of paper used?

Solution: Let x be the height of the whole poster, let y be the width of the whole poster. We need
to minimize A = xy. Printed area being 50 means that (x — 8)(y — 4) = 50, so y = 4+ 2%, Then
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Need to minimize this function over x > 8.
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Is this really a minimum?
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so the function is concave up, so x = 18 is the absolute minimum. When x = 18, y = 9.

Problem 5.(10 points) Suppose that an ostrich 5 ft tall is walking at a speed of 4 ft/sec directly
towards a light 10 ft high. How fast is the tip of the ostrich’s shadow moving along the ground?

Solution: Let x be the distance of ostrich from light. We know Cfl—f = —4. Let y be the distance of
the tip of the shadow from light. We need Z—Z Similar triangles say
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and so y = 2x. Then
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