Loyola University Chicago Math 201, Fall 2009

Name (print):	Signature:
- · · · · · · · · · · · · · · · · · · ·	

Please do not start working until instructed to do so.

You have 2 hours.

You must show your work to receive full credit.

You may use one double-sided 8.5 by 11 sheet of handwritten (by you) notes.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Total.

Problem 1. (10 points total) Let P, Q, and R be statements. Is $(P \text{ AND } Q) \implies R$ equivalent to $(P \implies R) \text{ OR } (Q \implies R)$?

Problem 2. (8 points total) Multiply $(102)_3$ and $(20112)_3$ in base 3.

Problem 3.(14 points total)

a.(7 *points*) Find all integers x such that $x^3 + 4x + 1 \equiv 0 \pmod{5}$.

b.(7 points) Find all nonnegative integers such that $x^3 + 4x + 1 \equiv 0 \pmod{5}$ and $3x \equiv 2 \pmod{7}$.

Problem 4.(10 points total) Suppose that $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1. Show that $a \equiv b \pmod{m}$.

Problem 5. (10 points total) Let $x_0 = 5$, $x_1 = 1$, and $x_n = -5x_{n-1} + 14x_{n-2}$ for n = 2, 3, ...Show that $x_n = 4 \cdot 2^n + (-7)^n$ for all n = 0, 1, 2, ...

Problem 6.(16 points)

a.(6 points) Find gcd(990, 714).

b.(5 points) Find all integers x and y such that 990x + 714y = 18.

c.(5 points) Find all integers x and y such that 990x + 714y = 25.

Problem 7. (10 points total) Prove that $2^{70} + 3^{70}$ is divisible by 13.

Problem 8. (12 points total) How many elements does each of the following sets have? Frame your answer. No partial credit.

a. (4 points) Nonnegative divisors of 3969.

 $\mathbf{b.}(4 \text{ points})$ Nonnegative integers, greater than 100 and less than 660, that can be written with distinct digits.

c.(4 points) Ways of ordering the elements of the set $\{A, B, C, D, E, F, G, H, I, J\}$ in a line such that either A or B is first and G is last.

Problem 9.(10 points) Prove using mathematical induction that there is n! permutations of a set with n elements. Only partial credit will be given for proofs that do not use induction. Recall that a permutation of a set with n elements is, essentially, an arrangements of n elements in a line.