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Problem 1.(10 points total) Let P , Q, and R be statements. Is (P AND Q) =⇒ R equivalent to
(P =⇒ R) OR (Q =⇒ R)?

Answer / solution: Yes, they are equivalent. Check using truth table.

Problem 2.(8 points total) Multiply (102)3 and (20112)3 in base 3.

Answer / solution: (2122201)3



Problem 3.(14 points total)

a.(7 points) Find all integers x such that x3 + 4x + 1 ≡ 0 (mod 5).

Answer / solution: use brute force, get x ≡ 3 (mod 5) or x = 3 + 5k, k ∈ Z.

b.(7 points) Find all nonnegative integers such that x3 + 4x + 1 ≡ 0 (mod 5) and 3x ≡ 2 (mod 7).

Answer / solution: Put x = 3 + 5k into 3x ≡ 2 (mod 7), get 9 + 15k ≡ 2 (mod 7), simplify to
k ≡ 0 (mod 7). So k = 7l, l ∈ Z, and x = 3 + 5k = 3 + 35l, l ∈ Z. But we need nonnegative x, so
the final answer is x = 3 + 35l, l ∈ Z, l ≥ 0.



Problem 4.(10 points total) Suppose that ac ≡ bc (mod m) and gcd(c,m) = 1. Show that a ≡ b
(mod m).

Answer / solution: ac ≡ bc (mod m) means that m|ac − bc so m|c(a − b). Since gcd(c,m) = 1,
c and m have no common prime factors. Every prime factor of m divides c(a − b). Hence, every
prime factor of m divides a− b. So then m divides a− b, so a ≡ b (mod m).

Problem 5.(10 points total) Let x0 = 5, x1 = 1, and xn = −5xn−1 + 14xn−2 for n = 2, 3, . . . .
Show that xn = 4 · 2n + (−7)n for all n = 0, 1, 2, . . . .

Answer / solution: use strong induction.



Problem 6.(16 points)

a.(6 points) Find gcd(990, 714).

Answer / solution: 6

b.(5 points) Find all integers x and y such that 990x + 714y = 18.

Answer / solution:
x = 13− 119k, y = −18 + 165k, k ∈ Z.

c.(5 points) Find all integers x and y such that 990x + 714y = 25.

Answer / solution: No solutions because 6 does not divide 25.



Problem 7.(10 points total) Prove that 270 + 370 is divisible by 13.

Answer / solution: Use brute force or Litte Fermat’s Theorem to get that 212 ≡ 1 (mod 13). So
270 =

(
212

)5 · 210 ≡ 210 (mod 13). Also, get 33 ≡ 1 (mod 13) so 370 ≡
(
33

)23 · 3 ≡ 3 (mod 13). So

270 + 370 ≡ 210 + 3 = 1024 + 3 = 1027 = 79 · 13

and hence 13|270 + 370. Alternatively, you can rely on Little Fermat’s Theorem to get that 212 ≡ 1
(mod 13), etc...

Alternative solution: use the identity

an − bn = (a− b)(an−1 + an−2b + an−3b2 + · · ·+ abn−2 + bn−1.

Then
270 + 370 = 435 − (−9)35 = (4− (−9)) ( some integer ) = 13 ( some integer )



Problem 8.(12 points total) How many elements does each of the following sets have? Frame your
answer. No partial credit.

a.(4 points) Nonnegative divisors of 3969.

Answer / solution: 5 · 3 = 15.

b.(4 points) Nonnegative integers, greater than 100 and less than 660, that can be written with
distinct digits.

Answer / solution: count the numbers between 100 and 599, then count the numbers between 600
and 660, get 5 · 9 · 8 + 6 · 8.

c.(4 points) Ways of ordering the elements of the set {A,B, C, D, E, F,G,H, I, J} in a line such
that either A or B is first and G is last.

Answer / solution: 2 · 8!



Problem 9.(10 points) Prove using mathematical induction that there is n! permutations of a set
with n elements. Only partial credit will be given for proofs that do not use induction. Recall that a
permutation of a set with n elements is, essentially, an arrangements of n elements in a line.

Answer / solution: The key step is showing this: if there are n! ways of arranging n elements in
line, then there are (n + 1)! ways of arranging n + 1 elements in line. There are ways to thos the
latter directly, but that is not induction!

Take a set with n + 1 elements, say {a1, a2, . . . , an+1}. Take the first n elements {a1, a2, . . . , an}
and arrange them in a line. There is n! ways to do this. Then, there are also n + 1 different spots
to put the element an+1: it could be first, second, third,..., n + 1-st. Hence, there is (n + 1)n! ways
of arranging n + 1 elements in a line, and (n + 1)n! = (n + 1)!.


