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Problem 1.(16 points total) For each of the true/false questions below, circle the right answer.
For each of the other questions, write a numerical answer on the line. No partial credit.

a.(2 points) ∀x ∈ Z ∃ y ∈ Z such that x + y ≥ 0.

True. False.

b.(2 points) For any prime number p and any integer a, ap−1 ≡ 1 (mod p).

True. False.

c.(2 points) For any statements A and B, (A =⇒ B) OR ((NOT A) =⇒ B) is true.

True. False.

d.(2 points) 1.23456567567567567567... = 1.234565̇6̇7̇ is irrational.

True. False.

e.(2 points) Ways of arranging all of the elements of the set {A,B, C, D, E, F} in a line such that
A is either in the first place or in the last place.

Answer: 2 · 5! = 240

f.(2 points) 7920 = 16 · 9 · 5 · 11. How many different nonnegative divisors does 7920 have?

Answer: 5 · 3 · 2 · 2 = 60

g.(2 points) Convert (1011011)2, which is written in base 2, to base 10.

Answer: 1 + 2 + 8 + 16 + 64 = 91

h.(2 points) Suppose that p and q are prime numbers with p 6= q. Then x ≡ 7 (mod pq) is equivalent
to x ≡ 7 (mod p) and x ≡ 7 (mod q).

True. False.



Problem 2.(9 points total) Let a = 98910012 and b = 9591000110.

a.(3 points) Is ab divisible by 8? Why?

Solution: 8 = 23, so check divisibility of a and b by powers of 2. Recall the test for divisibility by
powers of 2: 2p divides a number x if 2p divides the number made up of the last p digits of x. Now,
4|a because 4|12, and 2|b because 2|0. Hence 4 · 2|ab. Answer is YES.

b.(3 points) Is ab divisible by 16? Why?

Solution: we already know 4|a and 2|b. Now note 8 6 |a because 8 6 |12, and 4 6 |b because 4 6 |110.
Hence 8 is the highest power of 2 that divides ab. Answer is NO.

c.(3 points) Is ab divisible by 15? Why?

Solution: 15 = 3 · 5. 3|a because 3|9 + 8 + 9 + 1 + 1 + 2 = 30, 5|b because the last digit of b is 0
or 5. Hence 15|ab. Answer is YES.

Problem 3.(8 points total) Let p, q, x, y ∈ Z and consider the statement:

If p|x and q|y then pq|xy.

a.(4 points) Write the converse statement and determine if it is true or not.

Solution: converse statement:

If pq|xy then p|x and q|y.

It is FALSE. For example, 2 · 2|4 · 1 but it is not true that 2|4 and 2|1.

b.(4 points) Write the contrapositive statement and determine if it is true or not.

Solution: contrapositive statement is “If NOT pq|xy then NOT (p|x and q|y)” which simplifies
to

If pq 6 |xy then p 6 |x or q 6 |y.

It is TRUE because the original statement is true.



Problem 4.(10 points) Find the greatest common divisor of 4522 and 434.

Solution: EEA looks like this:
1 0 4522
0 1 434
1 −10 182

−2 21 70
5 −52 42

−7 73 28
12 −125 14

−31 323 0

Hence gcd(4522, 434) = 14.

Problem 5.(10 points total) Prove that for all natural numbers n,

13 + 23 + 33 + · · ·+ n3 =
[
n(n + 1)

2

]2

.

Solution:



Problem 6.(15 points total) The Extended Euclidean Algorithm applied to 1001 and 126 looks
like this:

1 0 1001
0 1 126
1 −7 119

−1 8 7
18 −143 0

and consequently, gcd(1001, 126) = 7. Using this information, answer the questions below:

a.(3 points) Find all integer solutions to 1001x + 126y = 7.

Solution: next to last line in EEA gives 1001(−1)+126(8) = 7. Last line in EEA gives 1001(18)+
126(−143) = 0 so also 1001(18k) + 126(−143k) = 0 for all k ∈ Z. Hence

1001(−1 + 18k) + 126(8− 143k) = 7

and the complete solution is x = −1 + 18k, y = 8− 143k, k ∈ Z.

b.(3 points) Find all integer solutions to 1001x + 126y = 21.

Solution: next to last line in EEA gives 1001(−1) + 126(8) = 7 so also 1001(−3) + 126(24) = 21.
Last line in EEA gives 1001(18) + 126(−143) = 0 so also 1001(18k) + 126(−143k) = 0 for all k ∈ Z.
Hence

1001(−3 + 18k) + 126(24− 143k) = 21

and the complete solution is x = −3 + 18k, y = 24− 143k, k ∈ Z.

c.(3 points) Find all integer solutions to 1001x + 126y = 15.

Solution: gcd(1001, 126) = 7, 7 does not divide 15, so there are NO solutions.

d.(3 points) Find all nonnegative integer solutions to 1001x + 126y = 126.

Solution: note that 126/7 = 18, and just like in part a above, get

1001(−18 + 18k) + 126(144− 143k) = 126.

Now we need −18+18k ≥ 0, which simplifies to k ≥ 1, as well as 144−143k ≥ 0, which simplifies to
144/143 ≥ k. The only k satisfying both inequalities is k = 1. Hence, the only nonnegative solution
is x = −18 + 18 = 0, y = 144− 143 = 1.

e.(3 points) Find all integer solutions to 126z ≡ 1008 (mod 1001).

Solution: 126z ≡ 1008 (mod 1001) is equivalent to 126z ≡ 7 (mod 1001) which is equivalent to
existence of x ∈ Z such that 126z + 1001x = 7. This was solved in a above, so z = 8− 143k, k ∈ Z.



Problem 6.(10 points) State Fermat’s Little Theorem and use it to prove the following:

• For any prime number p and any integer a, ap − a is divisible by p.

Solution: FLT says this: if p ∈ Z is prime and a ∈ Z is not divisible by p, then ap−1 ≡ 1 (mod
p).

We need to prove that for any prime number p and any integer a, ap ≡ a (mod p). If p 6 |a, then
FLT implies ap−1 ≡ 1 (mod p), multiplying both sides by a gives ap ≡ a (mod p). If p|a, then a ≡ 0
(mod p), hence ap ≡ 0 (mod p), and ap ≡ a (mod p) because 0 ≡ 0 (mod p).

Problem 7.(10 points total) Solve the simultaneous congruences:

3x ≡ 4 (mod 5), 4x ≡ 5 (mod 9).

Solution: the inverse of [3] in Z5 is [2], because [2][3] = [6] = [1]. Multiply both sides of first
congruence by 2, get 6x ≡ 8, so x ≡ 3 (mod 5). Hence x = 3+5k. Plug this into second congruence,
and simplify: 4(3 + 5k) ≡ 5, 2k ≡ 2 (mod 9). Then k ≡ 1 (mod 9) and so k = 1 + 9l, l ∈ Z. Hence
x = 3 + 5(1 + 9l) = 8 + 45l.



Problem 8.(8 points total) The Fibonacci numbers are defined as follows:

a1 = 1, a2 = 1, an = an−2 + an−1 for n ≥ 3.

For example, a3 = a3−2 + a3−1 = a1 + a2 = 2, a4 = a2 + a3 = 3, a5 = 5, a6 = 8, etc. Prove that, for
all natural numbers n,

n∑
k=1

a2
r = anan+1.

Solution: use induction. First, for n = 1, get
∑n

k=1 a2
r =

∑1
k=1 a2

r = a2
1 = 12 = 1, while

anan+1 = a1a2 = 1 · 1 = 1, and 1 = 1. Now suppose that
∑n

k=1 a2
r = anan+1 and try to show that∑n+1

k=1 a2
r = an+1an+2. We have

n+1∑
k=1

a2
r =

(
n∑

k=1

a2
r

)
+ a2

n+1 = anan+1 + a2
n+1 = (an + an+1) an+1 = an+2an+1,

where the second equality above comes from the inductive assumption and the last equality comes
from the definition of Fibonnaci numbers. We are done.

Problem 9.(8 points) Let m be a positive integer. Prove that if 2m − 1 is prime then m is prime.
This may be useful: ak − bk = (a− b)

(
ak−1 + ak−2b + ak−3b2 + · · ·+ abk−2 + bk−1

)
.

Solution: let’s prove the contrapositive statement:

If m is not prime then 2m − 1 is not prime.

If m is not prime, then m = pq for some p, q ∈ Z, 1 < p, q < m. Then, using the hint,

7m − 1 = 2pq − 1 = (2p)q − 1q = (2p − 1)
(
(2p)q−1 + (2p)q−2 1 + · · ·+ (2p) 1q−2 + 1q−1

)
.

In particular, 2p − 1|2m − 1, and because 1 < 2p − 1 < 2m − 1, this means that 2m − 1 is not prime.
The contrapositive is thus proven. The original statement is equivalent to the contrapositive, so it is
proved as well.


