Sample Quiz 2 Solutions

Loyola University Chicago Math 201, Spring 2010

Name (print): _____

Signature: ____

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (5 pts) Prove that, given three integers a, b, and c, if a|b and b|c, then a|c.

Solution: a|b means that there exists an integer m such that b = ma. b|c means that there exists an integer n such that c = nb. Hence c = nb = n(ma) = (nm)a. Since nm is an integer, c = (nm)a means that a|c.

Problem 2. (5 pts) Find all pairs of nonnegative integers x and y such that 509x - 132y = 2.

Solution: Extended Euclidean Algorithm applied to 509x + 132y = 2 yields

1	0	509
0	1	132
1	-3	113
-1	4	19
6	-23	18
-7	27	1
132	-509	0

Next to last row says 509(-7)+132(27) = 1, hence 509(-14)+132(54) = 2. Last row says 509(132)+132(-509) = 0, hence 509(132k)+132(-509k) = 0 for all $k \in \mathbb{Z}$. Adding yields 509(-14+132k)+132(54-509k) = 2, hence 509(-14+132k)-132(-54+509k) = 2. Thus, all solutions to 509x-132y = 2 are given by x = -14+132k, y = -54+509k. We need $x = -14+132k \ge 0$, $y = -54+509k \ge 0$, so $k \ge 14/132$, $k \ge 54/509$, which amounts to k > 0 (or, equivalently, $k \ge 1$). Hence, all nonnegative solutions are given by

 $x = -14 + 138k, \ y = -54 + 509k, \quad k \ge 1.$

Problem 3. (5 pts) Your phone company charges 15 cents per minute for long distance calls within US and 39 cents per minute for calls to Europe. You receive a monthly bill for long distance calls shows \$16.70. explain why this bill must be incorrect.

Solution: Let x be the number of calls within US and y the number of calls to Europe. Then

$$15x + 39y = 1670$$

Is this equation possible with x and y integer? No, because gcd(15,39) = 3 and 3 does not divide 1670.

Problem 4*. (5 pts) Let a and b be nonzero integers. Show that gcd(a, b) = 1 if and only if gcd(a, a + b) = 1.

Solution: First, we show that if gcd(a,b) = 1 then gcd(a,a+b) = 1. Obviously, 1|a and 1|a+b. Suppose that d is a common divisor of a and a+b. Then d|a, d|a+b, and so d|a+b-a, in other words, d|b. So d is a common divisor of a and b, and so $d \leq 1$. Consequently, gcd(a, a+b) = 1.

Second, we show that if gcd(a, a + b) = 1 then gcd(a, b) = 1. If gcd(a, a + b) = 1 then there exist integer x, y such that ax + (a + b)y = 1. The last equations can be changed to a(x + y) + by = 1. Since 1 is a common divisor of a and b, the equation a(x + y) + by = 1 implies that 1 is the greatest common divisor of a and b.