Name (print):

Signature: _____

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (6 pts) Is the number below divisible by 2? By 3? By 4? By 5? By 6? By 9? Very briefly explain each answer.

102030405060102030405060

Solution:

Divisible by 2 because last digit divisible by 2. Divisible by 3 because sum of digits is 42 and 3|42. Divisible by 4 because last two digits, i.e., 60, divisible by 4. Divisible by 5 because last digit is 0. Divisible by 6 because divisible by both 2 and 3. Not divisible by 9 because sum of digits is 42 and 9 /42.

Problem 2. (4 pts) Recall that $a \equiv b \pmod{m}$ means that m | (a-b). Prove the following properties:

- (a) $a \equiv b \pmod{m}$ implies $b \equiv a \pmod{m}$,
- (b) $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$.

Solution: see textbook or lecture notes.

Problem 3. (4 pts) Find the last digit in the representation of 7^{451} in base 10 and in base 8.

Solution: $7^4 \equiv 1 \pmod{10}$, so

$$7^{451} = 7^{448}7^3 = (7^4)^{112}7^3 \equiv 1^{112}7^3 \equiv 7^3 \equiv 3 \pmod{10}$$

so the last digit in base 10 is 3. $7 \equiv -1 \pmod{8}$ so

$$7^{451} \equiv (-1)^{451} = -1 \equiv 7 \pmod{8}$$

so the last digit in base 8 is 7.

Problem 4. (8 pts) True or false? If true, give a brief proof/explanation. If false, give a counterexample.

If 15 a and 15 b then 15 ab.

Solution: False. Try a = 3, b = 5.

If two distinct prime numbers p and q are such that $pq|a^2$ then p|a and q|a.

Solution: True. p is a prime factor of a^2 , so also p^2 is a factor of a^2 . q is a different prime factor of a^2 , so also q^2 is a factor of a^2 different from p^2 . Then p is a factor of a and q is a different factor of a.

If 13|ab then 13|a or 13|b.

Solution: True. 13 is prime, and since it is a prime factor of ab, it is a prime factor of either a or b (or both). Then 13|a or 13|b.

If two prime numbers p and q are such that $pq|a^2$ then p|a and q|a.

Solution: True. If p and q are distinct, see two questions back. If p = q then $p|a^2$ implies p is a prime factor of a^2 so p^2 is a factor of a^2 so p is a factor of a. Since q = p, q is a factor of a as well.