Loyola University Chicago Math 201, Spring 2010

Name (print): ______

Signature:

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (5 pts) Solve the simultaneous congruences

Problem 2. (4 pts) State the Little Fermat's Theorem and use it to show that $15^{110} - 1$ is divisible by 11.

Problem 3. (5 pts) Find the inverse of [17] in \mathbb{Z}_{53} . For full credit, your answer should have the form [m], where m is an integer between 0 and 52.

Problem 4. (6 pts) The Chinese Remainder Theorem says the following: If $gcd(m_1, m_2) = 1$, then, for any $a_1, a_2 \in \mathbb{Z}$, the simultaneous congruences $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$ have a solution, and if $x = x_0$ is one solution than the complete solution is $x \equiv x_0 \pmod{m_1 m_2}$. Use this result to prove the following:

• If
$$gcd(m_1, m_2) = 1$$
 then $x \equiv a \pmod{m_1 m_2} \iff \begin{cases} x \equiv a \pmod{m_1} \\ x \equiv a \pmod{m_2} \end{cases}$