Loyola University Chicago Math 201, Spring 2010

Name (print):

_ Signature: ____

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (7 pts) Find all solutions to the congruence

 $x^2 \equiv 4x \pmod{77}$.

Solution: get $x^2 - 4x \equiv 0 \pmod{77}$, so $x(x-4) \equiv 0 \pmod{77}$. Now note that $77 = 7 \cdot 11$, so $x(x-4) \equiv 0 \pmod{77}$, i.e., 77|x(x-4), holds only if one of the following four cases is true:

- $77|x, i.e., x \equiv 0 \pmod{77}$
- $77|x-4, i.e., x-4 \equiv 0 \pmod{77}, i.e., x = 4 \pmod{77}$
- 7|x and 11|x-4, so x = 7k and 7k-4+11l = 0; solve 7k+11l = 4, get x = 70+77k;
- 11|x and 7|x-4, so x = 11 + 77l.

The complete solution is $x \equiv 0$ or $x \equiv 4$ or $x \equiv 11$ or $x \equiv 70 \pmod{77}$.

Problem 2. (3 pts) Find all solutions to

$$15x \equiv 14 \pmod{39}.$$

Solution: the congruence is equivalent to 15x + 39y = 14 for some $y \in \mathbb{Z}$. Now, gcd(15, 39) = 3 and $3 \not| 14$, so there are no solutions.

Problem 3. (5 pts) Prove that $n^{91} \equiv n^7 \pmod{91}$ for all integers n. Is $n^{91} \equiv n \pmod{91}$ for all integers n?

Solution: 91 = 7 * 13 and 7, 13 are prime (so gcd(7, 13) = 1), so the congruence $n^{91} \equiv n^7 \pmod{91}$ is equivalent to simultaneous congruences

$$n^{91} \equiv n^7 \pmod{7}$$
 and $n^{91} \equiv n^7 \pmod{13}$,

which are the same as

$$(n^{13})^7 \equiv n^7 \pmod{7}$$
 and $(n^7)^{13} \equiv n^7 \pmod{13}$.

One of the consequences of the Fermat's Little Theorem is that, for any prime p and any a, we have $a^p \equiv p \pmod{p}$. This verifies both of the congruences above.

Problem 4. (5 pts) The Linear Congurence Theorem says that $ax \equiv c \pmod{m}$ has a solution if and only if gcd(a,m)|c, and if x_0 is one solution then $x \equiv x_0 \pmod{\frac{m}{gcd(a,m)}}$ is the complete solution. Use this result to prove the following:

• If $gcd(m_1, m_2) = 1$, then, for any $a_1, a_2 \in \mathbb{Z}$, the simultaneous congruences

$$x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}$$

have a solution, and if $x = x_0$ is one solution than the complete solution is $x \equiv x_0 \pmod{m_1 m_2}$.

Solution: see textbook.