Loyola University Chicago Math 201, Spring 2010

Name (print): _____

Signature:

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (5 pts) Solve the simultaneous congruences

Solution: in \mathbb{Z}_7 , $[4]^{-1} = 2$ so $4x \equiv 3 \pmod{7}$ can be rewritten as $24x \equiv 23$, so $x \equiv 6 \pmod{7}$. Hence x = 7k + 6, plug this into the second equation, get $7(7k + 6) \equiv 47$, $49k + 42 \equiv 47$, so $3k \equiv 5 \pmod{23}$. Change to a Diohpantine equation 3k + 23l = 5. Check gcd(3, 23) = 1|5, so solutions exist. Guess that 38 + 23(-1) = 1 so 340 + 23(-5) = 5. Hence, k = 40 is one solution, which gives one solution x = 7 40 + 6 = 286 to the simultaneous congruences. Then all solutions are $x \equiv 286 \pmod{161}$, where 161 = 723, which simplifies to

$$x \equiv 125 \pmod{161}.$$

Problem 2. (4 pts) State the Little Fermat's Theorem and use it to show that $15^{110} - 1$ is divisible by 11.

Solution: for any prime p and integer a such that $p \not| a, a^{p-1} \equiv 1 \pmod{p}$. Here, take p = 11, a = 15, check that $11 \not| 15$, get that $15^{10} \equiv 1 \pmod{11}$. Hence $(15^{10})^{11} \equiv 1 \pmod{11}$ as well, which is what needed to be shown.

Problem 3. (5 pts) Find the inverse of [17] in \mathbb{Z}_{53} . For full credit, your answer should have the form [m], where m is an integer between 0 and 52.

Solution: need to solve $17x \equiv 1 \pmod{53}$, so 17x + 53y = 1. Extended Euclidean Algorithm gives x = 25, so the answer is [25].

Problem 4. (6 pts) The Chinese Remainder Theorem says the following: If $gcd(m_1, m_2) = 1$, then, for any $a_1, a_2 \in \mathbb{Z}$, the simultaneous congruences $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$ have a solution, and if $x = x_0$ is one solution than the complete solution is $x \equiv x_0 \pmod{m_1 m_2}$. Use this result to prove the following:

• If $gcd(m_1, m_2) = 1$ then $x \equiv a \pmod{m_1 m_2} \iff \begin{cases} x \equiv a \pmod{m_1} \\ x \equiv a \pmod{m_2} \end{cases}$

Solution: see textbook.