Name (print):

Signature:

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (5 pts) Prove, by induction, that for every $n \in \mathbb{N}$,

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Solution:

First step: for n = 1, left-hand side is 1^2 , right-hand side is $\frac{1(1+1)(2\cdot 1+1)}{6} = 1$, so they are equal. Second step: suppose that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ and shown that $1^2 + 2^2 + 3^2 + \dots + n^2 + (n+1)^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6}$. Using the supposition, we get that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

Now, do algebra:

$$\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = (n+1)\left[\frac{n(2n+1)}{6} + (n+1)\right] = (n+1)\frac{2n^2 + n + 6n + 6}{6}$$
$$= (n+1)\frac{2n^2 + 7n + 6}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

Done!

Problem 2. (5 pts) Prove, by induction, that for every $n \in \mathbb{N}$ greater than 1,

 $\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < 3 - \frac{2}{(n+1)!}.$

Solution:

First step: for n = 2, left-hand side is $\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} = 1 + 1 + \frac{1}{2} = 2\frac{1}{2}$, right-hand side is $3 - \frac{2}{3!} = 3 - \frac{1}{3} = 2\frac{2}{3}$. We have $2\frac{1}{2} < 2\frac{2}{3}$. Second step: suppose that $\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < 3 - \frac{2}{(n+1)!}$ and show that $\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < 3 - \frac{2}{(n+1)!}$ $\frac{1}{n!} + \frac{1}{(n+1)!} < 3 - \frac{2}{(n+2)!}$. Using the supposition, we get that

$$\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} < 3 - \frac{2}{(n+1)!} + \frac{1}{(n+1)!}.$$

It is left to show that

$$3 - \frac{2}{(n+1)!} + \frac{1}{(n+1)!} \le 3 - \frac{2}{(n+2)!},$$

which simplifies to

$$\frac{1}{(n+1)!} + \frac{2}{(n+2)!} \le \frac{2}{(n+1)!}.$$

Multiply both sides by (n+2)!, get $n+2+2 \leq 2(n+2)$, which is true. Done!

Problem 3. (6 pts) Let $a_0 = 0$, $a_1 = 1$, and for $n \ge 2$, let $a_n = 2a_{n-1} - a_{n-2} + 2$.

- (a) Calculate a_2 , a_3 , a_4 , and a_5 .
- (b) Predict a formula for a_n based on your calculations.
- (c) Prove your prediction from (b).

Solution: $a_0 = 0$, $a_1 = 1$, $a_2 = 2a_1 - a_0 + 2 = 4$, $a_3 = 2a_2 - a_1 + 2 = 9$, $a_4 = 2a_3 - a_2 + 2 = 16$, $a_5 = 2a_4 - a_3 + 2 = 25$. Guess that $a_n = n^2$. Now prove it, using strong induction. Check a_0 and a_1 directly, and yes, $a_0 = 0^2$, $a_1 = 1^2$. Now, suppose that for k = 0, 1, 2, ..., n, we have $a_k = k^2$. Need to prove that $a_{n+1} = (n+1)^2$.

$$a_{n+1} = 2a_n - a_{n-1} + 2 = 2n^2 - (n-1)^2 + 2 = 2n^2 - n^2 + 2n - 1 + 2 = n^2 + 2n + 1 = (n+1)^2$$

Done!

Problem 4. (4 pts) State the Binomial Theorem and use it to prove that, for all $n \in \mathbb{N}$,

$$\binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^2 + \binom{n}{3}2^3 + \dots + \binom{n}{n-1}2^{n-1} + \binom{n}{n}2^n = 3^n.$$

Solution: The Binomial Theorem is in the textbook. Apply it to a = 1 and b = 3.